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Abstract

Modern machine learning has proven to be extremely effective in aiding and au-
tomating a large number of tasks, beginning with simple image recognition, now
ranging widely from full language translation and understanding to computer-aided
medical diagnosis and drug discovery. These advances have largely been enabled
by significant development in computation schemes and algorithms, that have come
alongside exponential increases in the scale of training data available. Success in
these cases is measured directly by performance, evaluating some sort of error or ac-
curacy that proves to be competitive with even domain-level experts. Recent research
within the field has thus now moved to orthogonal, but equally important questions
involving robustness to data distribution shifts, model fairness, interpretability of
model outputs, and explainability of model predictions. The analysis of these var-
ied questions typically look at the learning formulation with a finer toothed comb,
identifying individual elements or groups of elements of interest. These ideas all
fall under a similar fundamental problem of finding subsets, where they be of groups
within the population, features of the input, or sections of the model. Uniquely
shaped by their particular machine learning instantiations, we need methods for
identifying (1) subsets of training samples or subpopulations which have disparate
outcomes for a given model, (2) feature subsets that are sufficient or uniquely explain
a particular model prediction, and (3) important parameter subsets or paths through
neural network models that explicitly describe how a model output was generated. In
this dissertation, we will describe a number of methods for addressing these subset
selection problems. Developing mathematical tools based primarily on aspects of
differential geometry and conditional independence, we will demonstrate theoretical
and empirical effectiveness of these methods on a wide breadth of problems that can
be distilled in the manner above, including hypothesis testing with medical imaging,
predicting disease progression, machine unlearning, and increasing model fairness.
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Chapter 1

Introduction

Modern applications of machine learning in a broad range of industrial and consumer-
facing systems have become ubiquitous. Most interactions with daily technologies
now intrinsically involve a request to some “smart“ system in the “cloud”, where
those interactions range from a request for map directions to simply loading a web-
page. Neural network models, and the recent advances of deep learning, have enabled
these systems that make such applications possible. These models have achieved
human-level performance on learning tasks including image classification (He et al.,
2016; Krizhevsky et al., 2017), image segmentation (Minaee et al., 2021), video analy-
sis (Zhang et al., 2016), text understanding and generation (Devlin et al., 2018; Brown
et al., 2020), and have slowly begun to solve more fundamental scientific problems
such as protein folding (Noé et al., 2020) drug discovery (Vamathevan et al., 2019),
and medical diagnosis (Bakator and Radosav, 2018). While this performance is largely
attributed to model size, the abundance of high quality training data has equally
contributed to real world performance, enabling model training over millions of real
world samples (Russakovsky et al., 2015; Schuhmann et al., 2021), and potentially
billions of synthetic samples via environment simulation (Silver et al., 2016).

While deployment in some domains (recommender systems, object detection)
may benefit almost unconditionally from this vastly expanded capability, rightful
hesitancy has limited their widespread use in particular applications where impacts
on individuals, people, or environments may be at stake. These “last mile” concerns
take a few forms. In mission critical applications such as medical diagnosis, the
impact of an error can be extremely large, even if a misprediction happens extremely
infrequently. Additionally, large scale model training and architecture search can
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require exorbitant amounts of energy producing high emissions, and their scale can
limit participation to only large actors with vast existing resources (Anthony et al.,
2020). The accessibility and effectiveness of these models can also vary significantly
based on the training data, and disparate outcomes can be exacerbated by existing
social inequity.

While existing human or “natural” systems that these models aim to assist are
not perfect, our real world has developed norms and regulations that enable them to
function. A medical diagnosis might require a physician to explain what symptoms
led them to that particular conclusion. Energy metering and carbon taxes may be
applied to limit emissions. Regulatory satisfaction may require analysis proving
equal opportunity, or that specific protected classes are not used in decision making.
These ideas are difficult to directly translate to automated machine learning systems,
but proxies have been identified that we can build upon.

These norms and regulations answer a number of questions we may also try to
pose to our machine learning models. What is the cost to learn this task? What led to
this particular outcome? Why is this outcome different from another?

If the answer to these questions is negative or unknown, follow-up questions all
take an interesting form: Can we learn a smaller model with similar performance?
Can we identify the most important features? Which individuals or groups are being
treated unfairly, and can we change that? These questions ask us to identify a subset
of some relevant set, dependent on setting, and this identification is our focus here.

Taking a step back, let’s take a look at a representative system. Figure 1.1 illustrates
a typical learning pipeline. A dataset is collected and used to train a model, by
minimizing the error over those samples in the dataset (top). A “sample” can be
a single measured value, or it can be a large, highly structured object with many
“features.” The model is made up of some “parameters” that are tuned during training
to learn a good predictor over the training dataset. This model is then used to predict,
or infer, on new data seen “in the wild” (bottom). Our questions above are formally
asking to identify subsets of these objects: is a subset of the model parameters sufficient
for learning? Which subset of the features are important for a prediction? Which
subset of the dataset exhibit a specific attribute?
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Figure 1.1: Machine learning training and inference visualization.

This thesis focuses its main efforts on identifying these important subsets of model,
feature, and sample space, to enable answering questions necessary for mainstream
adoption of machine learning methods.

Let us step a bit deeper into a basic illustrative example. In order to ease under-
standing, we can first begin with a basic formulation of learning methods, from which
the questions above can take specific forms. Learning methods typically try to identify
a function mapping (model) that is able to complete a specific task at some high level
of proficiency. Say we have some dataset comprising of sample pairs (x, y), where we
wish to predict y from x. Our prediction, say ŷ, might be the output of some unknown
function f that we attempt to learn from training data. Let our approximation to this
function be f̂ . This can take many forms, based on assumptions and prior information
we may have on the relationships among the data. Consider the simple linear case,
where we want to learn some parameter w such that y = w · x. Given n sample
pairs (xi, yi) indexed by i, traditional statistics and optimization literature yields the
following least squares problem formulation, where we want to minimize the “squared
error” between the observed values yi and the predicted ŷi := w · xi:

f̂ := ŵ = arg min
w

n∑
i=1

(yi − w · xi)2 (1.1)
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This formulation extends without much change to a multi-dimensional form of the
input x and respectively, w: the canonical case where a number of features, say
d, of x, or covariates (e.g., symptoms), are used together to predict the outcome
(e.g., diagnosis). This is typically represented as a d-dimensional vector, with each
position representing a different feature. If we are interested in which features of x

are important, we can look at the relative values of the learned “weights” w. In this
simple setting, the importance of a feature (say xj) can be exactly determined by the
importance of the corresponding parameter (wj). A weight value far from zero may
indicate that corresponding feature is important for diagnosis.

In this case and others, traditional statistical learning methods have been studied
for many decades. Linear regressors, decision trees, and support vector machines have
all been analyzed under this lens. New research focuses particularly on the differences
associated with moving from classical under-parameterized models to modern (deep)
over-parameterized models: where the model size vastly outnumbers the number of
input samples. Methods for estimating the number of samples needed, the time to
learn a particular task, and the generalization ability all require new perspectives in
this regime. While nascent, these high-dimensional approaches attempt to fill the gap
between statistical and deep models to enable similar measures of sample influence,
feature importance, and model understanding.

A full picture. Let us expand our notation from the example above to consider this
more general framing. Consider a dataset X := {xi}n

i=1 of size n where each data
point xi in the set X is drawn from some underlying distribution over the domain
xi ∼ X d, with domain dimensionality (number of features) d (typically indexed by j

as xj). A model f is fit using a parameterization θ ∈ Θ, with Θ the space of possible
parameterizations (models) with some intrinsic dimension p. Generalizing the least
squares “error measure” from (1.1) to an arbitrary loss ℓ, we have

f̂ := θ̂ = arg min
θ∈Θ

∑
xi∈X

ℓ(fθ(xi)) (1.2)

From an analysis perspective, we might be interested in any one of (a) subsets of
input features F ⊆ X that are important for the downstream task, (b) associating
model subsets P ⊆ Θ with specific inputs or groups of inputs, or (c) subsets or
subgroups of samples S ⊆ X that are sufficient or representative of the entire dataset.

Crucially, an uninformed search for a subset is computationally infeasible. For



5

Figure 1.2: An example of identifying specific features important to the learning task.

a superset of size n = |X|, the set of all subsets is the power set, with a size of
2n! If an identification procedure requires looking over all of these and choosing a
“best” one by some measure, the procedure will be limited to very small supersets.
Efficient methods have been developed in each of the three contexts above to avoid
this exponential search.

Feature Selection. From the statistics side, penalized weighting of parameters in
models similar to Equation (1.1) has been analyzed thoroughly, proving effective
sparse recoveries, with nonzero elements identifying the selected features. Correlation
and other statistical measures such as mutual information can be used to identify
features that relate most to the outcome of interest based on the chosen measure.
Analyses of variance and covariance have been widely used to determine if statis-
tically significant relationships among variables of interest. When the number of
variables is large, but an assumption can be made about their internal structure, scan
statistics (Glaz et al., 2001; Chan and Walther, 2013) allow for a structured “scan-
ning” over the input space, skipping subsets of features unlikely to demonstrate
relationships based on the measure of interest. Adaptations of sensitivity analysis,
via noise addition and perturbations have found success (Yeung et al., 2010; Zhang
and Wallace, 2015), alongside activation mapping (Zhou et al., 2016; Selvaraju et al.,
2017). These methods typically generate an analagous “weighting” over the input
space, identifying features most salient for the specific task (Figure 1.2).

These weighting approaches work well with more complex models f compared to
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Figure 1.3: An example of identifying specific parameters important to the learning
task.

the linear case above: newer “black-box” methods have been developed for identifying
important features. Recent popular methods with broad applicability include SHAP
(Shapley Additive Explanations) and LIME (Local Interpretable Model-agnostic Ex-
planations) (Lundberg and Lee, 2017; Ribeiro et al., 2016). Shapley methods estimate
the importance, or weight, of a particular feature for a prediction through randomized
masking to estimate marginal contributions. LIME samples the model space around
the input of interest to estimate the decision function locally, penalizing complexity of
this estimation to enable interpretability of the explanations. Predominantly created
and deployed in computer vision and imaging domains, these methods have proven
effective in identifying parts of the input that drive the function output. In models
that generalize well, these features correspond to regions of the image that a human
would use in performing the same task.

Parameter Selection. Selection in the model space generally takes two forms. First,
as a prior, restriction, or assumption over the model space, and second, as a post-hoc
method for an “explainable” proxy. Regularization, sparsity, and gating methods are
often used independent of the type or size of the model, to encourage the solution to
fall within a specific region of the model space. A complete picture of the theoretical
underpinnings of these methods in deep learning has not yet been identified, but
some progress has nonetheless explained their effectiveness in practice (Hardt et al.,
2016; Jacot et al., 2018; Neyshabur et al., 2014). Outside of the actual training process,
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a number of methods have been proposed for model selection. By far the most valuable
approach in scalable machine learning has been architecture search, enabling a higher-
level identification of which parameters should be learned, and what their relationship
should be (Elsken et al., 2019). With a model learned, identifying a simpler model
takes the form of knowledge distillation. Originally presented in Hinton et al. (2015) and
overviewed for modern DNNs in Gou et al. (2021), the technique involves training a
simpler “student” model to mimic the output of the original, complex “teacher” model.
To aid interpretability, disentanglement approaches have been widely successful, with
the goal of associated specific, distinct, parameters or regions of model space with
salient factors of variation within the data (Creager et al., 2019; Locatello et al., 2019).
Text and image generation models have benefited largely from similar ideas, enabling
tunable “knobs” corresponding to independent features of interest (Higgins et al.,
2017; Karras et al., 2019; Hjelm et al., 2019).

Of particular interest here are the parameters relevant to specific regions of the
input space after training (Figure 1.3). Here, recent analysis of deployed networks
has shown that indeed, models tend to learn subsets of parameters corresponding
to specific subregions of the input space, or subtasks (Bau et al., 2017a; Fong and
Vedaldi, 2018), and current work continues to explore these network regions to aid
in interpretability and explainability (Bau et al., 2017b; Zhou et al., 2018), some
associating specific paths through the network with specific tasks (Geiger et al., 2022;
Elhage et al., 2021).

Sample Selection. Interest in identification of a specific sample within the training
set, or a sample at test time, have led to a number of other approaches. Identification
in the most classical sense takes the form of outlier detection. Traditional statistics
would use some form of the largest error to the model fit, perhaps after removing
that sample and refitting. In the deep learning setting, we do not have the luxury of
being able to train a new model for each sample we wish to evaluate. Thus methods
for black-box outlier detection have been developed (Huang et al., 2020; Ren et al.,
2019). Outliers within the data and embedding space notwithstanding, the influence
of a particular sample on learning is of independent interest: are some samples
particularly valuable or detrimental to training? Is there a minimal set sufficient for
learning the task? Building on ideas in archetypal analysis (Cutler and Breiman,
1994) and coreset identification (Agarwal et al., 2005; Ravi et al., 2019), post-training
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Figure 1.4: An example of identifying specific samples important to the learning task.

methods have also been effective in understanding sample influence (Koh and Liang,
2017; Golatkar et al., 2020a; Huang et al., 2020).

Additionally, once a sample or set of samples has been identified, it may be the
case that we wish to adjust our model to either increase or decrease their influence or
some other measure. In the context of fairness, a subset of samples may be “outliers”,
but represent a true mode of the sample space that has not been fit properly. Then
we may want “in-the-loop” methods that can adjust for this individual or group
unfairness (“outlierness”) during training (Mehrabi et al., 2021). After a model has
been trained however, post-hoc adjustments are difficult. One topical application of
this is machine unlearning, where we wish to remove a sample’s influence completely
without retraining (Bourtoule et al., 2021; Cao and Yang, 2015). As we will see,
this is still yet impractical with existing methods, and we will use novel tools to
construct practical algorithms for efficient post-hoc model updates based on a sample’s
influence.

Thesis Goal: Identify, construct, and evaluate methods for efficient subset identifica-
tion in modern machine learning feature, model, and input spaces.

1.1 A Few Motivating Examples
Consider a traditional machine learning classification task in which we would like to
predict whether an individual has a specific disease condition based on a medical
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resonance image (MRI) scan of their brain. Our input feature x may consist of a
3D-array of values in RI×J ×K measuring some intensity of the imaging modality at
each voxel, indexed by a tuple (i, j, k) ∈ (I,J ,K). Our outcome variable y may simply
be a binary label of whether the input scan has been labeled by a radiologist as one
demonstrating typical disease characteristics. Using an off the shelf 3D convolutional
neural network with adjustments to match our input size, we can very quickly set up
and train a system to predict disease presence with a high degree of accuracy.

Example 1. With a prediction for a specific scan, or predictions over a number of
scans, we might be interested in identifying which regions of the brain are most
important for diagnosis. These regions, R ⊂ R := RI×J ×K, can be specific groups of
pixels in the image that may correspond to known functional networks. Methods
such as attention and class activation maps may work here, but there are a few issues.
The number of samples available to learn a model is very small compared to the both
the dimension of the input and the number of parameters in the model, i.e., n≪ p

and n≪ d. Thus it is very easy to overfit, and for areas of interest to be associated
with intricacies of particular input data rather than true, real differences defined by
the disease.

Furthermore, recent medical imaging studies have moved past simple difference
detection: trends over time, and the ability to predict future disease development have
by far become the setting of most interest. Given an image of a healthy individual, is
it possible to predict what their scan, or their future disease diagnosis, may be up
to 10, 20, or more years in the future? If a number of scans have been collected over
some timeframe, can the trajectory of the individuals’ development be extrapolated to
estimate progression? As traditional models extended for temporal analysis grow
in both size and complexity, a number of subproblems explicitly related to model
and input subspaces arise. In this thesis we address two such problems: statistically
rigorous identification of temporally evolving subsets, and characterizations of
deep models that enable efficient training of recurrent models with large scale
time-varying data.

Example 2. With the rapid growth of AI and machine learning applications has come
valid concerns regarding both guarantees of privacy. Recent technology legislation
has made the importance clear in all aspects of data use, and particular projects
and groups have demonstrated that machine learning is not independent of this
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need (Harvey, 2021). A new issue raised within this intersection is the “right to be
forgotten". If a model has been trained with a particular users’ data, they should
have some recourse or right to both remove their data from the training set, and also
know that the model has not learned from their data. On the surface, this poses a
significant problem for model builders and organizations that spend large amounts
of time and resources in training deep learning models.

In the medical imaging example above this is especially important: with fewer
samples it is more likely that information about any particular one could “leak”, and
the model’s performance may degrade significantly as a relatively large percentage
of it’s training data is removed. Thus tailored methods must be developed to ensure
both privacy and performance, without requiring full retraining. As we will see,
identification of model parameter subsets that are particularly important for a
particular sample’s influence in a model enables efficient machine unlearning.

Example 3. From an alternative perspective, we may want to identify specific sam-
ples rather than have them specified a priori. Traditionally a rigorous area of study
under classical statistics, outlier detection and accounting have become a subfocus
for many within the machine learning community as well (Golatkar et al., 2020a,b;
Huang et al., 2020; Ren et al., 2019). While subgroups of input samples may be
outliers, it is more often the case that they represent known heterogeneity within
the data. These differences may be marked using group information known a priori,
and most learning tasks aim to learn tasks in a subgroup-independent manner. In our
disease prediction model above, these groups could simply be stratified by the type
of scanner used to acquire the image, but it could also be a systematic difference
correlated with some protected or delineating attribute. Commonly used atlases for
brain MRI registration are often constructed from the scans of predominantly right-
handed middle-aged adults (Fonov et al., 2009). Resulting downstream analysis may
be significantly worse for people outside that age range or those who are left-handed.
These types of biases can directly lead to disparate performance and results on all
individuals outside of that group. Optimization and regularization methods with
this focus come under the umbrellas of model fairness, enforcing invariance, and
spurious feature regularization among others. However, many existing methods do
not scale well to larger models or as the number of subgroups grows, as is often the
case when intersections of protected classes must be considered. Here we identify
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and construct a particular solution for groupwise fairness that enables efficient
in-the-loop fairness regularization.

Here we focus our effort on identifying these important subsets of model, feature, and
sample space for feature association, model size reduction, model unlearning, and, fairness.
Specifically, taking advantage of both existing statistical and geometric methods, we
develop new methods for localizing subsets in a range of settings from hypothesis testing
to deep learning.

1.2 Thesis Scope and Contributions
We explore the intersections of classical statistical and geometric constructions with
modern machine learning methods. Figure 1.5 shows the overall scope projected
along three axes: feature, parameter, and sample spaces. Below we briefly introduce
the main problems studied in this thesis.

Figure 1.5: Thesis scope, projected over three representative axes.
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Chapter 3: Second-Order Modeling and Group Difference Analysis
over Time

Results in coupled or temporal graphical models offer schemes for estimating the
relationship structure between features when the data come from related (but distinct)
longitudinal sources (Zhou et al., 2010; Qiu et al., 2016). A novel application of these
ideas is for analyzing group-level differences, i.e., in identifying if trends of estimated
objects (e.g., covariance or precision matrices) are different across disparate conditions
(e.g., gender or disease). Often, poor effect sizes make detecting the differential signal
over the full set of features difficult: dependencies between only a subset of features
may manifest differently across groups. We first suggest a parametric model for
estimating trends in the space of SPD matrices as a function of one or more covariates.
With this in hand, we move on to using graphical model approaches to determine
on which covariates sets it is most meaningful to fit these trends. We generalize scan
statistics to graph structures, and search over distinct subsets of features (graph
partitions) whose temporal dependency structure may show statistically significant
group-wise differences. We theoretically analyze the Family Wise Error Rate (FWER)
and bounds on Type 1 and Type 2 error. On a cohort of individuals with risk factors
for Alzheimer’s disease (but otherwise cognitively healthy), we find scientifically
interesting group differences and associated subsets, where the default analysis, i.e.,
models estimated on the full set of features, do not survive reasonable significance
thresholds.

Chapter 4: Efficient Tensor Representations for Feasible Temporal
Deep Learning

Modern deep networks have proven to be very effective for analyzing real world
images. However, their application in medical imaging has required additional and
specific machinery, primarily due to the large dimension of three-dimensional images,
requiring enormous network architectures – if we treat an image (and not image
patches) as a sample. These issues only compound when the focus moves towards
longitudinal analysis through recurrent structures, and when a point estimate of
model parameters is insufficient in scientific applications where a reliability measure is
necessary. Building upon the differential geometry insights from the previous chapter,
we will adapt a particular tensor decomposition, the tensor train, to construct networks
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with significantly fewer parameters. Using the theoretical guarantees afforded by its
geometry, it enables us to train powerful recurrent networks on whole brain image
volumes. Resembling model and parameter selection methods such as compression
and distillation, we analyze the orthogonal tensor train, and demonstrate its ability to
represent a standard network layer both theoretically and empirically. We demonstrate
its ability to effectively reconstruct whole brain volumes with faster convergence and
stronger confidence intervals compared to the standard tensor train decomposition.
We provide code and show experiments on the ADNI dataset using image sequences
to regress on a cognition related outcome.

Chapter 5: Practical Unlearning via Large-Scale Conditional
Independence Testing

Recent legislation has led to interest in machine unlearning, i.e., removing specific train-
ing samples from a predictive model as if they never existed in the training dataset.
Unlearning may also be required due to corrupted/adversarial data or simply a user’s
updated privacy requirement. For models which require no training (k-NN), simply
deleting the closest original sample can be effective. But this idea is inapplicable to
models which learn richer representations. Recent ideas leveraging optimization-
based updates scale poorly with the model dimension d, due to inverting the Hessian
of the loss function. We describe a variant of a new conditional independence coeffi-
cient, L-CODEC, to identify a subset of the model parameters with the most semantic
overlap on an individual sample level. Our approach completely avoids the need
to invert a (possibly) huge matrix. By utilizing a Markov blanket selection, we find
that L-CODEC is also suitable for deep unlearning, as well as other applications in
vision. Compared to alternatives, L-CODEC makes approximate unlearning possible
in settings that would otherwise be infeasible, including vision models used for face
recognition, person re-identification and NLP models that may require unlearning
samples identified for exclusion.

Chapter 6: Reducing Subgroup Fairness via High Dimensional
Earth Mover’s Distances

Optimal transport has recently emerged as a useful tool for machine learning through
its connections with geometry, statistical machine learning, and through practical
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algorithms. Existing methods that leverage optimal transport often regularize using
a Wasserstein metric or by computing barycenters, for example. We leverage optimal
transport, except that we take advantage of a recently-introduced algorithm that com-
putes a generalized earth mover’s distance. Not only is this algorithm computationally
cheaper to compute compared to existing barycentric measures, but our method has
the additional advantage that gradients used for backpropagation can be directly
read off of the forward pass computation, which leads to substantially faster model
training. This speedup enables practical methods of accounting for large subgroups
of samples that may need to be treated equally when stratified. We provide techni-
cal details about this new regularization term and its properties, and experimental
demonstrations of improved training speed over existing Wasserstein-style methods.

Chapter 7: Conclusions and Future Work

The thesis will conclude with brief descriptions of both completed and ongoing work
that has been strongly motivated by the methods developed herein. Chapters 3 and 4
above have been extended in a number of directions, and continues to influence future
research direction. The more recent work in Chapters 5 and 6 is serving as an ongoing
foundation for new work. Developments include developing and providing a plug-
and-play efficient optimal transport tool for community use, addressing a important
gap in existing off-the-shelf methods. Particularly motivated by the general shift
towards ensuring models such as GPT-2 and Stable Diffusion are fair and equitable,
we conclude with a brief reflection on the role of conditional independence as a
measure of influence and its role in interpretability.

1.3 Outline
Chapter 2 covers the essential background necessary for the developments presented
in the following chapters, including specifics of graphs and hypothesis testing, as well
as relevant modern methods for learning and optimization. In Chapters 3 through 7,
we describe four perspectives to address subset identification. Chapter 3 explores
and focuses on the identification of feature subsets varying over time. In Chapter 4
we describe a method of constraining the parameter space in a particular manner
that enables more efficient large scale neural networks. Next, Chapter 5 provides a
solution to the machine unlearning problem, enabled through a particular conditional
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independence parameter selection scheme, vastly reducing network update costs.
Chapter 6 ends with a unique solution to subgroup fairness, where we take advantage
of an efficient solution to the d-dimensional earth mover’s problem to regularize large
models when the number of subgroups can be large. We conclude in Chapter 7 with
ongoing and future work, as well as some final thoughts.
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Chapter 2

Background

Here we will briefly describe some background concepts and ideas that will aid
and facilitate discussion of subset identification in later chapters. Following some
general notation, we will begin with an overview of classical probability and statistics,
and a focus on the hypothesis testing schemes built upon in the third chapter. This
is followed by the basics of Riemannian differential geometry and the geometry
of tensor objects, the key objects that enable the tests and efficiencies described in
both Chapters 3 and 4. Next we will provide an overview of optimization tools and
methods particularly suited and developed for neural network methods, alongside
typical forms and objectives in the machine learning literature, used in Chapter 5.
We conclude this chapter with a discussion on optimal transport methods in deep
learning, important for our discussion of novel optimization schemes in Chapter 6.

2.1 General Notations
The following notations will be standard throughout the sequel, with any particular
chapter overloads or redefinitions explicitly mentioned.

• Calligraphic capital letters such as D,M,X will typically represent spaces.

• Lowercase letters such as i, x, n will represent vectors as well as scalars (in-
dices, sizes, and dimensions), and subsequently a vector v ∈ Rd would be a
d-dimensional vector over the reals. The transpose will be indicated by ⊤.

• Capital letters such as X, H, T will refer to matrices and higher order tensors,
as well as sets (including random variables) based on context.
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• We use Rd to represent d-dimensional vector space over the reals. The positive
orthant of Rd is denoted Rd

+ :=
{
x ∈ Rd : x(i) ≥ 0, i ∈ [d]

}
. e := (1, . . . , 1) ∈ Rd

will denote the constant vector.

• For learning settings, the training dataset will typically be defined by S, with
samples xi ∈ S in the general setting, and (xi, yi) ∈ S in the supervised setting.
Other datasets T, U may also be used and defined in context.

• Subscripts will denote indexing into sets or vectors, or estimation (in the case
of integrals and expectations) over the specified subscript. Superscripts will be
used as additional decorators when needed.

Additional theoretical and experimental details can typically found in the Ap-
pendix, with specific references in appropriate sections of the main text.

2.2 Probability and Independence
A density function (distribution) is a mapping from each element in an outcome
space x ∈ X to a number between 0 and 1. This mapping is generally written as
p(x) := P(X = x), x ∈ X to denote the distribution over possible realizations x of
X . X may also denote a set of random variables X := {Xi}n

i=1, where a draw from
the distribution over X results in a vector x. When X follows the law defined by a
specific p(x), we say X is a random variable with distribution p(x).

For q ≥ 1, we define the q-norm as ∥x∥q :=
(∑

i∈[n] |x(i)|q
)1/q

, and if q is suppressed,
then ∥x∥ := ∥x∥2. A discrete probability distribution is a point p ∈ Rn

+ with e′p =
∥p∥1 = 1.

The expectation of a random variable E[X] is the “weighted average” over all
outcomes. For discrete variables (which will be our main focus with expectations),

E[X] =
∑
x∈X

x · p(x) (2.1)

The properties of distributions below extend to measures of expectations among
multiple variables, with some caveats mentioned in specific chapters as needed.

Over a set of random variables X and Y , the distribution p(x, y) := P(X = x, Y =
y) is the joint distribution over both variables (X, Y ). The marginal distribution for x
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is computed by “summing out” y, i.e.,

p(x) = P(X = x) =
∑

y

P(X = x, Y = y) =
∑

y

p(x, y) (2.2)

=
∫

p(x, y)dy (2.3)

We say that the random variables X and Y are independent if their joint distribution
is equal to the product of their marginals: p(x, y) = p(x)p(y). Intuitively, a draw
from one distribution has no impact on the draw from the other. In the case where
the variables are dependent, the distributions are linked. The dependent draw is
defined by the conditional distribution p(y|x). Then, a joint distribution can factor
as an iterative draw first from p(x) followed by from p(y|x): p(x, y) = p(x)p(y|x).
Importantly, this dependence is commutative: it is also true that p(x, y) = p(y)p(x|y).
When p(y|x) = p(y), we say that Y is independent of X . This commutativity leads to
the formulation of Bayes’ Rule:

p(y|x) = p(x|y)p(y)
p(x) (2.4)

This form is used throughout statistics and machine learning. In most settings, we
are interested in estimating some parameters θ, or distribution over parameters p(θ),
given a distribution over data p(x). Applying Bayes’ Rule:

p(θ|x) = p(x|θ)p(θ)
p(x) (2.5)

Where p(x|θ) is the likelihood of observing the data x given some parameter set, p(θ)
is the prior assumption on the base distribution over parameters, p(x) is the marginal
over all data (typically treated as a normalizing constant), and p(θ|x) is the posterior
distribution over the parameters given some data. Alternatively, we wish to update
our estimation of the parameters θ from p(θ) to p(θ|x) given some observations x

that change our beliefs about the parameter space. Maximum a posteriori (MAP)
estimation attempts to find the parameters that maximize this posterior, using Bayes’
rule for tractable computation and estimation.

max
θ

p(θ|x) = max
θ

p(x|θ)p(θ)
p(x) = max

θ
p(x|θ)p(θ) (2.6)
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If we have some samples {xi}n
i=1 from the data distribution that comprise a dataset,

then we have the following equivalent log-transformed model:

max
θ

n∑
i=1

log p(xi|θ) + log p(θ) (2.7)

This is the canonical form used in most of machine learning: generally associating a
“loss" or recovery term to the likelihood, and a regularization to the prior.

Conditional Independence

With three or more variables, independence relations among variables may be deter-
mined by which variables are being conditioned upon.

Definition 2.1 (Conditional Independence). For three random variables X, Y, Z, we say
that Y is conditionally independent of X given Z, written as Y ⊥⊥X|Z, if

p(y, x|z) = p(y|z)p(x|z). (2.8)

Intuitively, once Z is known, X provides no additional information in predicting
Y . This can also be written as p(y|x, z) = p(y|z).

Graphs. With a larger number of variables, tracking independence relations can
become cumbersome with this notation. Graphs are commonly used in place. Graphs
G are defined by their vertex and edge sets G := (E, V ). The vertices V correspond to
some random variables X, Y, Z, . . ., or X1, . . . , Xn. An undirected graph is one in which
the existence of an edge eij implies the existence of edge eji. Within a probabilistic
graphical model, an edge eij implies a conditional dependence. The omission of a particular
edge thus has an explicit meaning:

eij ̸∈ E ⇐⇒ Xi ⊥⊥Xj|XV \(i,j) (2.9)

Where V \ (i, j) is the rest of the variables in the set and graph. A graph with these
independence relations is also referred to as a Markov graph: pairwise conditional
independence relations imply global conditional independence relations: for any sets
of variables A, B, C, if C “separates” A and B, While directed graphs (Bayesian net-



20

works) are used and are of independent interest, in this thesis we focus on undirected
graphs.

Multivariate Gaussians. Extending the typical univariate Gaussian distribution
p(x) = 1√

2πσ2 e−(x−µ)2/2σ2 defined by mean and variance parameters µ, σ2, we have the
following exponential density function for multivariate Gaussian distributions over n

variables, with realizations as the vector x := [x1, . . . , xn]⊤:

p(x1, . . . , xn) = 1√
(2π)n|Σ|

exp
(1

2(x− µ)⊤Σ−1(x− µ)
)

(2.10)

Where µ is the vector of means for each individual variable, and Σ is the n × n

covariance matrix describing the second-order interactions among the variables. The
tractability of both computing the density and estimating it in typical likelihood
estimation frameworks makes the multivariate Gaussian a particular attractive prior
used in many applications, including estimating independence. Specifically,

Theorem 2.2. Let X be governed by a multivariate Gaussian as defined in (2.10). Then it
holds that

Σij = 0 ⇐⇒ Xi ⊥⊥Xj (2.11)

Complete independence among variables is often not possible and in most settings
not valuable. However, a more practical result for conditional independence exists.

Theorem 2.3. (Lauritzen, 1996) Let X be governed by a multivariate Gaussian as defined
in (2.10), and Ω := Σ−1 be the precision matrix. Then it holds that

Ωij = 0 ⇐⇒ Xi ⊥⊥Xj|X\(i,j) (2.12)

This immediately yields that the precision matrix encodes the edges of the prob-
abilistic graphical model over the variables. Estimating these dependencies is thus
equivalent to estimation of the precision matrix. Further, if the precision matrix
is sparse, we can derive dependencies between features when the data is high-
dimensional and/or the number of measurements are small.
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Estimating Parameters and Measures Over and Among Distributions

Multivariate data analysis exploiting the conditional independence structure between
features or covariates using undirected graphical models is now standard within
any data analysis toolbox. When samples are drawn from a particular family of
distributions, a number of methods exist to estimate the parameters that fit that data
best. The estimation of a graphical model has been extensively studied and a rich
literature is available describing its statistical and algorithmic properties (Koller and
Friedman, 2009; Jordan, 1998). MAP estimation and maximum likelihood estimation
as described above are typically used, but in many cases their standard forms do not
yield parameters that reveal independence, i.e., it is often impossible for standard
methods to result in a parameter estimate of zero.

To determine the relationship among two random variables, measures such as the
Pearson correlation coefficient, and Spearman and Kendall rank coefficients (Myers
et al., 2013) are frequently used, with values close to zero suggesting a low importance,
and a value close to 1 suggesting perfect dependence. However, these measures are
only applicable with specific assumptions about the possible dependencies between
the variables: Pearson coefficients can only identify linear dependencies, and rank
coefficients typically fail with non-monotonic dependencies (e.g., periodic functions).
These methods can be computed pairwise among all variables among a set of variables
with size greater than 2, however, to estimate conditional dependencies typically
requires the estimation of partial coefficient measures. Additionally, while results
similar to Theorem 2.3 exist under specific assumptions , practical estimation does
not often yield exact zeros, and estimating all partial coefficients separately can be
computationally heavy.

With some assumptions, sparse recoveries are possible while estimating ALL
conditional independencies. Following the results from multivariate Gaussians above,
a penalized version of a maximum likelihood estimate can be recovered through the
following graphical lasso (Friedman et al., 2008) formulation:

Ω̂ = min
Ω⪰0

tr(Σ̂Ω) + log |Ω|+ λ||Ω||1 (2.13)

With Σ̂ being the sample covariance of the data samples, and λ a penalization weight.
The constraint Ω ⪰ 0 restricts the solution to be positive semi-definite: symmetric
matrices with nonnegative eigenvalues. This ℓ1 penalization has been shown to be
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Figure 2.1: From data collected on various measures (left), we can compute a covari-
ance matrix, estimate a sparse inverse, and recover the conditional independence
relationships among measures (right).

easy to compute, and a number of alternative versions have been proposed with
varying theoretical properties and recovery guarantees (Cai et al., 2011; Yuan, 2010).
Particularly interesting are extensions to nonparanormal distributions, which allow
for a much larger set of graphs to be estimated over other distributions via a rank
covariance matrix, generalizing the pairwise rank and distance coefficients above
(Liu et al., 2009; Xue and Zou, 2012).

The distributional assumptions needed for all of these methods, however, are
often completely unknown in practice, or the data represent highly complex densities
and functions that cannot be represented by simple exponential families or rank-
based measures. Newer measures of nonparametric estimations of dependence have
been developed, such as distance correlation and kernel-based coefficients (Székely
and Rizzo, 2014; Wang et al., 2015; Doran et al., 2014), but they tend to either only
test for independence and not strength of functional relationship, or have complex
instantations or asymptotic theories, making them difficult to deploy and rely upon
in practice.

A recent coefficient, the Chatterjee coefficient, has been demonstrated to have
a number of desirable properties, and has been further developed into an elegant
method for testing conditional independence (Chatterjee, 2020; Azadkia and Chat-
terjee, 2019). Particularly, no conditional densities need to be estimated, it can be
computed in O(n log n) time where n is the number of data samples, it asymptotically
to 0 for conditional independence, and 1 for measurable functions, and it requires
absolutely no assumptions on the law over the random variables. For arbitrary variables
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random X, Y, Z, where Y is univariate and X, Z can be multivariate of any size, the
conditional coefficient is given by

T (Y, X|Z) =
∫
E [VAR(P(Y ≥ t)|X, Z)|Z)] dµ(t)∫

E [VAR(I{Y ≥ t}|Z] dµ(t) (2.14)

with VAR(·) denoting the variance over the random variable. In Chapter 5 we will take
advantage of these properties. Critically, without a specific procedure, identifying the
conditioning set for a particular independence test is exponential. If we wish to find
which variables X1, . . . , Xn are sufficient for creating independence between some
outcome Y and the rest of the variables, naïvely we would need to test all possible
subsets. An advantage of the coefficient of dependence in Azadkia and Chatterjee
(2019) is that it admits a linear time algorithm for iteratively building the sufficient set,
naturally enabling an algorithm for constructing a Markov graph over the variables
of interest.

Hypothesis Testing

Statistical hypothesis testing involves formally defining and testing a hypothesis about
the world. A prior “null” assumption is defined. The null hypothesis, H0 represents
the default assumption or expectation that there is no relationship or distinction
among the true population states, whereas the alternative hypothesis, HA, describes
the world in which some hypothesized relationship or distinction does exist. Testing
proceeds by collecting observations of the variables of interest, computing a test
statistic, and comparing that statistic against a prior null distribution. If the test statistic
is larger than a predefined critical value, the null hypothesis is rejected: there is
reasonable evidence to suggest the alternative may be true. When we fail to reject the
null, there is insufficient evidence to support the alternative claim.

The form of the test statistic and null distribution are defined by the specific
hypothesis being tested, as well as the prior assumptions about the parameters of
interest and data collected.

Example: Testing a difference of means. Say we have collected samples from two
different groups, representing the height of each person in the group. Our task is
to determine if the average height of the two groups is significantly different from
each other. Naïvely, we can compute the averages of the two groups and compare. In
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practice these averages will never be equal, so how can we more rigorously determine
if we should consider some measured difference significant enough to say the groups
are different? We can set up the following hypothesis test.

Let µ1 be the true population mean of group 1, and µ2 the true population mean of
group 2. Our hypotheses are:

H0 : µ1 = µ2 HA : µ1 ̸= µ2 (2.15)

Let us assume we have collected the same number of samples from each group, n, and
that the means of the collected samples are µ̂1 and µ̂2, and the standard deviations
are s1 and s2. Then the test statistic

t = µ̂1 − µ̂2√
s2

1+s2
2

n

(2.16)

follows a t-distribution with n−1 degrees of freedom, if there is no difference between
the means. Comparing the value of the measured statistic over the observed data to
the corresponding t-distribution allows us to determine how likely or unlikely it is
that our observation follows the law that the means are equal. If we want our test
to accurately identify a difference between means 95% of the time, we can set our
threshold t∗ (critical value) for rejecting the null to be the point where P(t ≥ t∗) ≥ 0.95.

Importantly, the value of the t-statistic and corresponding distribution and critical
value are extremely dependent on the number of samples n acquired for the test. As
we will see, in cases where the number of samples is very small and our hypothesis
describes a subtle difference between groups, novel tests and procedures are necessary
to effectively identify those differences.

Likelihood ratios and permutation testing

Two challenges often appear in practice: (1) An obvious test statistic may not exist,
and (2) the null distribution of that statistic or the one chosen may not have a clear
form.

In the case of large parametric models, distributions over hundreds of parameters
or more become infeasible to compute in practice. In these cases, the likelihood-ratio
test can be used. With our posterior notation above, we have the following test statistic
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for the null hypothesis θ ∈ Θ0, Θ0 ⊆ Θ and the alternative θ ∈ ΘC := Θ \Θ0:

λLR = −2ln
[

supθ∈Θ0 p(x|θ)
supθ∈Θ p(x|θ)

]
(2.17)

The true power of the LRT statistic comes from two fundamental results. First, the
distribution of λLR asymptotically approaches a χ2 distribution with a fixed number
of degrees of freedom, enabling easy testing (Wilk’s Theorem, (Wilks, 1938)). And
second, the Neyman-Pearson lemma states that this likelihood-ratio test is the most
powerful α level test for this case (Neyman et al., 1933).

When even a likelihood ratio cannot be constructed in this form, a nonparametric
test exists that may be used for any statistic defined by the problem of interest. Con-
sider again a test of the form in (3.3), but where instead of the mean we have some
arbitrary statistic over our two groups. A permutation test comprises of generating
a null distribution through resampling. By shuffling the data and recomputing the
statistic, we can estimate the distribution of the statistic if there were no difference
among the groups. This distribution can then be used as the null distribution for
checking if the true group allocations result in a test statistic significantly different
from the null distribution.

These ideas will be used to construct and evaluate hypothesis tests in Chapter 3,
as well as in subsequent work building upon those results.

2.3 Differential Geometry
Here we present a brief overview of differential geometry. For a more in-depth
background, we refer interested readers to Do Carmo (1992), Lee (2003), and Spivak
(1981).

Differentiable manifold. A differentiable (smooth) manifold of dimension n is a set
M and a maximal family of injective mappings φi : Ui ⊂ Rn →M of open sets Ui of
Rn intoM such that:

1. ∪iφi(Ui) =M

2. for any pair i, j with φi(Ui)∩ φj(Uj) = W ̸= ϕ, the sets φ−1
i (W ) and φ−1

j (W ) are
open sets in Rn and the mappings φ−1

j ◦ φi are differentiable, where ◦ denotes
function composition.
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3. The family {(Ui, φi)} is maximal relative to the conditions (1) and (2).

Intuitively, a differentiable (smooth) manifoldM is a topological space that is
locally similar to Euclidean space and has a globally defined differential structure.

Tangent space (TpM). The tangent space at p ∈M is a vector space which consists
of tangent vectors of all possible curves passing through p.

Tangent bundle (TM). The tangent bundle ofM is the disjoint union of tangent
spaces at all points ofM, TM = ∐

p∈M TpM. The tangent bundle is equipped with a
natural projection map π : TM→M.

Riemannian manifold. A Riemannian manifold is equipped with a smoothly varying
metric (inner product), the Riemannian metric.

Various classical geometric notions, e.g., the angle between two curves or the
length of a curve, can be extended to manifold spaces.

Geodesic curves. A geodesic curve on a Riemannian manifold is the locally shortest
(distance-minimizing) curve. These are analogous to straight lines in Euclidean space
and a main object to generalize linear models to Riemannian manifolds (as we will in
Chapter 3).

Geodesic distance. The geodesic distance between two points onM is the length of the
shortest geodesic curve connecting the two points. More generally, distance between
two points on Riemannian manifolds is defined by the infimum of the length of all
differentiable curves connecting the two points. Let γ be a continuously differentiable
curve γ : [a, b] → M between p and q inM and g be a metric tensor inM. Then,
formally, the distance between p and q is defined as

d(p, q) := inf
γ

∫ b

a

√
gγ(t)(γ̇(t), γ̇(t))dt (2.18)

where γ(a) = p and γ(b) = q, and γ̇ is the derivative or rate of change of γ.

Exponential map . An exponential map is a map from a tangent space TpM to
M, which is usually locally defined due to the existence and uniqueness of an or-
dinary differential equation for the map. The geodesic curve from yi to yj can be
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V

Figure 2.2: From a basepoint b, we can identify the tangent space TbM, use a direction
V ∈ TbM to move using the tangent map, and use the exponential map to project
back on to the manifold.

Operation Euclidean Riemannian
Subtraction −−→xixj = xj − xi

−−→xixj = Log(xi, xj)
Addition xi +−−→xjxk Exp(xi,

−−→xjxk)
Distance ∥−−→xixj∥ ∥Log(xi, xj)∥xi

Mean ∑n
i=1
−→̄
xxi = 0 ∑n

i=1 Log(x̄, xi) = 0
Covariance E

[
(xi − x̄)(xi − x̄)T

]
E
[
Log(x̄, x) Log(x̄, x)T

]

Table 2.1: Basic operations in Euclidean space and Riemannian manifolds.

parameterized by a tangent vector in the tangent space at yi with an exponential map
Exp(yi, ·) : Tyi

M→M.

Logarithm map. The inverse of the exponential map is the logarithm map, Log(yi, ·) :
M → Tyi

M. For completeness, Table 2.1 shows corresponding operations in the
Euclidean space and Riemannian manifolds. In what follows, when operations are
nested, the exponential map and its inverse logarithm map are denoted by Exp(p, x)
and Log(p, v) respectively, where p, x ∈M and v ∈ TpM. They are usually denoted
Expp(x) and Logp(v) in classical differential geometry literature.

Separate from the above notations, the matrix exponential, i.e, exp(X) := ∑ 1
k!X

k,
where 0! = 1 and X0 = I and the matrix logarithm are denoted fully lowercase by as
exp(·) and log(·), similar to their univariate counterparts. These will be necessary in
a specific instance in Chapter 3, but otherwise will refer to the common univariate
functions in other contexts.
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Intrinsic mean. Let d(·, ·) define the distance between two points. The intrinsic (or
Karcher) mean is the minimizer to

ȳ = arg min
y∈M

N∑
i=1

d(y, yi)2, (2.19)

which may be an arithmetic, geometric or harmonic mean depending on d(·, ·). A
Karcher mean is a local minimum to (2.19), and a global minimum is referred to
as a Fréchet mean. On manifolds, the Karcher mean satisfies ∑N

i=1 Logȳ yi = 0. This

Algorithm 1: Karcher Mean on Manifolds
Input: y1, . . . , yN ∈M, α
Output: ȳ ∈M
while ∥∑N

i=1 Log(ȳk, yi)∥ > ϵ do
∆ȳ = α

N

∑N
i=1 Log(ȳk, yi);

ȳk+1 = Exp(ȳk, ∆ȳ)
end

identity implies the first order necessary condition of (2.19), i.e., ȳ is a local minimum
with a zero norm gradient (Karcher, 1977). In general, on manifolds, the existence and
uniqueness of the Karcher mean is not guaranteed unless we assume, for uniqueness,
that the data is in a small neighborhood.

Parallel transport. LetM be a differentiable manifold with an affine connection∇
and I be an open interval. Let c : I →M be a differentiable curve inM and let V0 be
a tangent vector in Tc(t0)M, where t0 ∈ I . Then, there exists a unique parallel vector
field V along c, such that V (t0) = V0. Here, V (t) is called the parallel transport of V (t0)
along c.

Geometry of SPD manifolds

As mentioned above, covariance matrices are symmetric positive definite matrices.
Here we focus our discussion to the above operations specific to SPD matrices.

Let SPD(n) be a manifold for symmetric positive definite matrices of size n× n.
This forms a quotient space GL(n)/O(n), where GL(n) denotes the general linear
group (the group of (n× n) nonsingular matrices) and O(n) is the orthogonal group
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(the group of (n× n) orthogonal matrices). Here, the tangent space TpM is the space
of symmetric matrices of dimension (n + 1)n/2.

The inner product of two tangent vectors u, v ∈ TpM is given by

⟨u, v⟩p = tr(p−1/2up−1vp−1/2) (2.20)

This plays the role of the Fisher-Rao metric in the statistical model of multivariate
distributions. The geodesic distance is d(p, q)2 = tr(log2(p−1/2qp−1/2)).

The exponential maps and logarithm maps are given as

Exp(p, v) = p1/2 exp(p−1/2vp−1/2)p1/2, Log(p, q) = p1/2 log(p−1/2qp−1/2)p1/2. (2.21)

Let p, q be in SPD(n) and a tangent vector w ∈ TpM, the tangent vector in TqMwhich
is the parallel transport of w along the shortest geodesic from p to q is given by

Γp→q(w) = p1/2rp−1/2wp−1/2rp1/2

where r = exp
(

p−1/2 v

2p−1/2
)

and v = Log(p, q)
(2.22)

Other spaces of interest. Orthogonal matrices of fixed size and rank also form a
manifold, the (compact) Stiefel Manifold: St(p, n) =

{
Y ∈ Rn×p|Y T Y = Ip, p ≤ n

}
.

An arbitrary X ∈ Rn×p matrix can be projected onto the Stiefel manifold St(p, n) using
X 7→ UV T where X = UΣV T is the (thin) singular value decomposition of X . We
will use this fact in Chapter 4.

Tensors and their Geometry

Let T ∈ Rn1×···×nd be a d-dimensional array, or tensor, with each mode having length ni.
To store a full rank tensor, nd storage would be required. A number of tensor factoriza-
tions have been developed to reduce this storage cost. The CANDECOMP/PARAFAC
(CP) decomposition (Harshman, 1970; Carroll and Chang, 1970) reduces the storage
to O(dnr), reducing the tensor to a sum of R rank-1 weighted outer products:

T CP =
R∑

r=1
λrx

r
1 ⊗ · · · ⊗ xr

d (2.23)
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Figure 2.3: CP-style decomposition of an arbitrary tensor.

where vectors xr
i ∈ Rni . Finding the exact CP-rank r is NP-hard, however. An

alternative decomposition decomposes the tensor into sets of matrices and one smaller
“core" tensor T . Generalizing the above,

T T ucker = T ⊗1 G1 . . .⊗d Gd (2.24)

where T ∈ Rk1,...,kd and the outer products are taken along the corresponding dimen-
sion. The size of T is defined as the Tucker rank, and when X = X T ucker, is analogous
to the number of nonzero eigenvalues for a matrix (tensor of dimension 2). In this
way, it is also considered a higher-order singular value decomposition, and algorithms
exist for computing it directly. Unfortunately its space complexity is O(dnr + rd),
reasonable for lower-order tensors but unsuitable as the order grows. Hierarchical
tensor methods have also proven to be effective in tensor compression (Cohen et al.,
2016; Cohen and Shashua, 2016), and have led to a newer construction with interesting
properties.

A more recent decomposition, the Tensor Train decomposition (TT) (Oseledets,
2011), defines an element of the tensor as

T (x1, . . . , xd) = A1(x1) · · ·Ad(xd) (2.25)

where xi ∈ {1, . . . , ni}, and Ai(xi) ∈ Rri−1×ri for each i ∈ {1, . . . , d} are called the cores
of the tensor train, with r0 = rd = 1. Equivalently, the full tensor is written as:

T =
r0∑

k0=1
· · ·

rd∑
kd=1

A1(k0, :, k1)⊗ · · · ⊗ Ad(kd−1, :, kd) (2.26)

where Ai ∈ Rri−1×ni×ri . This format requires O(dnr2) storage, but has two major
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Tensor Train Decomposition
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Figure 2.4: Visualization of a tensor train decomposition.

advantages over the CP format. First, finding the TT-rank (the smallest set of ri’s that
satisfy the decomposition with equality) of any arbitrary tensor is tractable, and as
such all tensors can be efficiently rewritten in the TT format. Second, projecting arbi-
trary tensors onto the TT format of a fixed rank requires only a set of QR and singular
value decompositions (Oseledets, 2011). This projection, TT-rounding, additionally
allows for a given TT tensor of some rank to be projected onto the space of TTs with
lower rank, and requires O(dr3) computational complexity. Separately, specific tensor
train constructions have recently been identified as forms of general recurrent net-
works (Khrulkov et al., 2019). We denote a tensor operator G as a grouping of tensor
modes into an “input" and “output" list, such that G ∈ R(nin

1 ,×...×,nin
d )×(nout

1 ,×...×,nout
d ).

This operator G can be seen as the TT representation of a matrix W ∈ R(ni
1···ni

d)×(no
1···no

d).
In Novikov et al. (2015), authors use this formulation to directly compress the weight
layers in neural networks. Cores in the operator are indexed by both an input and
output index, i.e., Ai(xi, yi) ∈ Rri−1×ri , where xi ∈ [1, . . . , nin

i ], yi ∈ [1, . . . , nout
i ].

Common operations upon tensor trains require matricizing the cores of the TT
format. Here, we define the left matricization of core Ai(xi) as

Ai(xi) = AL
i ∈ Rri−1ni×ri (2.27)

and the right matricization similarly. Other desirable operations are fully supported
by the format as well, including most linear algebra operations such as summations,
multiplications, Frobenius norms, and decomposition into the format via an iterative
higher-order SVD procedure. For brevity in this thesis, we refer interested readers to
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the original tensor train proposal and citations above.

Differential Geometry of Tensor Trains

Tensor trains with fixed TT-ranks form a Riemannian submanifold of Rn1×···×nd (Lu-
bich et al., 2015; Holtz et al., 2012):

Mr := {T ∈ Rn1×···×nd with TT-ranks r0, . . . , rd} (2.28)

Optimizing a function with respect to a Riemannian manifold-valued variable amounts
to computing a free derivative in the ambient space, projecting the gradient to the
tangent space of the current iterate, and using the (retraction) exponential map to
compute the next iterate. The authors in Novikov et al. (2017) use this procedure
to more effectively learn a model of all exponentially many interactions in a linear
model.

2.4 Deep Networks, Optimization, and Objectives
The form of the function fθ in (1.2) is critical in determining both the types of optimiza-
tion methods that may identify a solution, and the particular minimizer identified.
In the learning methods that follow, f will typically take the form of a deep neural
network. The advantages and successes of deep neural networks rely heavily on their
ease of optimization: the computation graph that underlies the neural network allows
for gradients to be computed by parts and accumulated via the chain rule.

Consider a simple function fθ(x) that is defined as a linear combination of some
parameters θ := w, w ∈ Rd with x ∈ Rd followed by a differentiable, nonlinear scalar
activation function a(·):

fθ(x) := a(w · x) (2.29)

If we have some estimate of the parameters θ := w, then the gradient of the full
network with respect to those parameters is

df

dθ
= df

da

da

dw
(2.30)
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where df/da is the (known) derivative of the activation function, and da/dw is exactly
x, the derivative of a linear function. With a direction of descent, we can update the
parameters via some update to minimize the functional f of interest:

θt+1 = θt + gx(θt) (2.31)

where g(·) is some function of the full derivative gx(·) := g(∇fθt(x)), and θt are the
current parameter estimates. Optimization proceeds and terminates when a certain
amount of iterations t have completed, or some stopping criterion has been reached,
typically that the gradient is small, indicating that a minima has been identified.

In data science and machine learning applications, we typically do not have a
fixed x, but rather a dataset X := {xi}n

i=1. If the dataset is small, we may be able to
still compute an update as in (2.31). But this is infeasible when we have thousands,
hundreds of thousands, or millions of samples. In this case, stochastic gradient
descent (SGD) is used. Gradient updates in SGD proceed by taking a single sample
and computing (2.31). Training of θ follows by iteratively updating the parameters
over full passes of the dataset. When feasible, mini-batches of samples can be used
instead of a single sample, and in both cases convergence and convergence rates have
been shown to be reasonable (Hardt et al., 2016).

Hessians. Uninformed gradient updates are generally preferred for their speed and
ease of computation. However, additional information in the form of the Hessian can
lead to faster convergence as well as a number of theoretical properties and guarantees.
Consider the function at a critical point θ∗. The Taylor expansion of the function at
that point is

f(θ) = f(θ∗) +∇f(θ∗)⊤f(θ − θ∗) + 1
2(θ − θ∗)⊤H(θ∗)(θ − θ∗) + . . . (2.32)

Where H(θ∗) is the Hessian matrix at the point θ∗. With no additional terms, this
second-order approximation provides information about the local curvature of the
function near the critical point, allowing a scaling of the gradient that can use this
local curvature to inform optimization:

θt+1 = θt + H(θt)−1g(θt) (2.33)
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These Newton updates are typically infeasible in most machine learning applications
with high-dimensional parameter spaces, where the complexity of the actual function
or the maximal moment is unknown. In some cases, Hessian approximations, or
its eigenspectrum can be efficiently computed, and as we will see this can lead to
practical measures that lead to new algorithms and guarantees.

For more on these ideas, and a formal treatment with respect to general optimiza-
tion, see Wright et al. (1999).

These formulations and SGD updates generalize to extremely large and complex
stacks of operations, and are what have enabled the enormous success and ubiquity of
learning methods. While “fully-connected" layers, such as in (2.29) are the simple in
their form, they have been proven to be sufficient in large capacity to serve as universal
function approximators (Cybenko, 1989). In this form however, capacity guarantees
require the number of parameters (dimension of w) to grow exponentially: infeasible
in practice. If the size is misspecified, training can lead to parameter settings that
are provably optima at that level, but fail to sufficiently capture the true problem
complexity. These problems extend to stacks of “fully-connected" layers as well:
nonlinearity through multiplication and activations is effective, but can lead to poor
training time results due to convergence to local minima.

The final minima identified can vary significantly based on the particular form of
the function fθ, and, in the case where the function f is not convex, it can also depend
on the estimate θ0 at initialization. This detail has been used to suggest that large,
complex neural networks may contain sub-networks that can be trained in isolation
to perform a task with high accuracy, even when randomly initialized. The “lottery
ticket hypothesis" states a small, sparse sub-network can be trained to perform just as
well as the larger network, but with fewer parameters and less computation (Frankle
and Carbin, 2019).

A wide variety of neural network architectures have been proposed depending on
the type of data and learning task. Some of the most commonly used architectures in-
clude Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs),
Transformers, Autoencoders, and Generative Adversarial Networks (GANs). CNNs,
mainly used in image recognition and processing tasks, use convolutions designed to
process grid-like imaging data. RNNs are designed to handle sequential data such as
time series or language, and have a memory-like mechanism that allows information
to persist in hidden state vectors. Transformers, now the de-facto method in Natural
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Figure 2.5: Nonconvex functions f(x) optimized using variations of gradient descent
can lead to different (and potentially non-global) optima (x̂).

Language Processing (NLP), make use of a self-attention mechanism, weighing the
importance of different input tokens for eventual prediction (Vaswani et al., 2017).
Autoencoders and Generative Adversarial Networks (GANs) fall under the category
of generative models, trained to generate outputs that resembles real data. Newer
generative models built on diffusion methods have been able to produce photorealistic
images based only on captions input by the user (Rombach et al., 2022). All of these
methods come with their own idiosyncracies in model capacity and practical methods
for efficient training (LeCun et al., 2015).

With these varying architectures has also come the field of architecture search,
identifying the hyperparameters and layer types that would lead to the best down-
stream performance with the most efficient full architecture. While computation-
ally expensive, techniques such as reinforcement learning, evolutionary algorithms,
gradient-based methods, and even greedy approaches have been used to identify
state-of-the-art networks (Elsken et al., 2019).

Losses and Probability Measures

The methods for optimization above lend themselves to typically arbitrary functions.
As described in the Introduction, typically a loss function is defined to measure the
disparity between the prediction or output of a model and the target of interest.
Optimizer flexibility has led to the development and design of loss functions that
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suit particular tasks, or those that correspond more directly to practitioners’ high-
level goals. Building on the classical mean-squared error, ℓ(fθ(x), y) := (y − fθ(x))2,
methods have extended to information-based schemes such as cross-entropy, as well
as incorporating classical regularization schemes to push solutions towards desirable
minima. These typically take the form of additive terms penalizing large norms over
weights, where the norm chosen corresponds to the choice of prior assumed by the
user.

Following the information-based schema, significant work has been done on
probabilistic forms of losses, treating the input and output spaces of models as
distributions. Particularly useful for generative models, f -divergences have been
studied as a general form of distances between probability distributions that can
be effectively minimized to train in such a way that model outputs come from a
maximum-entropy distribution with respect to the original training data (Nowozin
et al., 2016). Measures such as KL-divergence, mutual information, maximum-mean
discrepency, and others all fall within this framing.

Optimal Transport

Of particular interest in this thesis is the Wasserstein distance, or traditionally known
as the Earth Mover’s distance. Recent developments in GANs (Arjovsky et al., 2017)
have demonstrated the Wasserstein metric is typically more stable compared to other
measures and avoids mode collapse, sharp local minima with low variation. Interest-
ingly this formulation can be viewed as an approximation of the optimal transport
problem.

Optimal transport refers to the problem of finding a transportation plan that
minimizes some cost of transforming one probability distribution to another. De-
velopments in Riemannaian geometry and measure theory have led to a general
formulation.

Definition 2.4 (Monge-Kantorovich Problem (Kantorovich, 2006)). Let µ, ν be proba-
bility measures over separable metric spaces X and Y . The optimal transportation problem
seeks to find a joint measure γ on X × Y that satsifies

γ∗ = inf
{∫

X×Y
c(x, y)dγ(x, y)

∣∣∣∣ γ ∈ Γ(µ, ν)
}

(2.34)
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Figure 2.6: 2D Optimal transport measures the distance or cost associated with
transforming one discrete (above) or continuous (below) distribution to another.

Where Γ is the space of all probability measures with marginals equal to µ on X

and ν on Y . More common in recent machine learning is the Wasserstein distance,
defined as the p-th distance over the Monge-Kantorovich problem.

Definition 2.5 (Wasserstein metric). The Wasserstein p-distance is given by:

Wp(µ, ν) =
(

inf
γ∈Γ(µ,ν)

E(x,y)∼γd(x, y)p

)1/p

(2.35)

And the discrete analog:

Definition 2.6 (Earth Mover’s Distance). Let p1 and p2 be distributions with discrete
support of size n, and x(i, j), where x ∈ Rn×n, denotes the movement of “mass" from p1(i) to
p2(j). Denote by c(i, j) the cost of moving one unit of mass from p1(i) to p2(j). The Earth
Mover’s Distance (EMD) between p1 and p2 is the minimal cost to transform p1 into p2.
Written as a linear program (LP):

min
x∈Rn×n

+

∑
i,j

c(i, j)x(i, j) s.t.
∑

j

x(i, j) = p1(i);
∑

i

x(i, j) = p2(j), (∀i, j ∈ [n]).

(2.36)

Computation of the continuous measures can be straightforward with some as-
sumptions, leading to natural linear programming formulations akin to the EMD.
However in cases where one wishes to minimize this distance, practical complexity ex-
plodes, even in the discrete formulations commonly found in application. An entropic
regularization method introduced in Cuturi (2013) has led to newfound interest, use,
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and analysis of optimal transport for deep learning applications. In Chapter 6 we will
expand upon these ideas to the case where we have multiple distributions, and wish
to minimize the distance among all of them concurrently.

Each chapter in the sequel is defined by a unique intersection of the above ideas,
leading to new insights with respect to the subset selection problem of interest. The
relevant background will be referenced and refreshed as needed to ease narrative
continuity.
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Chapter 3

Localizing Group Differences over
Covariance Trajectories

Important feature identification has been well studied in classical statistics, and we
will start here by adapting those methods directly. We will see how marrying methods
from differential geometry and scan statistics enable identifying meaningful features
that indicate group differences over time, that otherwise would be undetectable given
direct applications of classical approaches. We describe theoretical developments on
graphical hypothesis testing, enabling the identification of scientifically important
and interesting group differences where classical hypothesis testing both does not
identify meaningful features, and does not identify unique differences among known
disparate groups of individuals. The work presented in this chapter was published
as a journal article in the Quarterly of Applied Mathematics (Mehta et al., 2019b).

3.1 Introduction
As described in the previous chapter, a number of methods have been extensively
studied for the sparse recovery of graphical models with various assumptions on
collected data. Often, data come from two (or more) disparate sources or multiple
timepoints. Proposals in the literature have described strategies for linking the sparsity
patterns of multiple graphical models, e.g., using a fused lasso penalty (Danaher et al.,
2014; Yang et al., 2015). Observe that if the data sources correspond to longitudinal
acquisitions, we should expect the ‘structure’ to gradually evolve. Several authors
have offered generalizations to address this problem: Zhou et al. (2010) removes the
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assumption that each graph is independent and structurally ‘close’. Instead, Zhou
et al. (2010) can be thought of as a growth model (McArdle and Bell, 2000) defined
on these structures: they show how non-identically distributed graphs can be learned
over time. The nonparametric procedure in Qiu et al. (2015) extends these ideas to
handle multiple sources, each with multiple samples.

The ideas in the literature so far to “couple” multiple graphical model estimation
modules are mostly nonparametric. While such formulations offer benefits, in many
estimation problems, parametric models may be more convenient for downstream
statistical analysis, particularly for hypothesis testing (Hardle and Mammen, 1993;
Geer, 2000; Roehrig, 1988). Algorithms for parametric estimation of temporal or coupled
Gaussian graphical models have not yet been heavily studied. This will involve
parameterizing trends in the highly structured nature of the ‘response’ variable (SPD
matrices). More recently, we find that parametric formulations for manifold-valued
data have been proposed (Kim et al., 2014; Cornea et al., 2016). Because SPD matrices
form a Riemannian manifold, algorithms that estimate a parametric model respecting
the underlying Riemannian metric are more suitable in many applications, as opposed
to assuming a Euclidean metric on positively or negatively curved spaces (Xie et al.,
2010; Fletcher and Joshi, 2007; Jayasumana et al., 2013). We will make a few simple
modifications (for efficiency purposes) to such algorithms and make use of the
estimated parameters for follow-up analysis.

Finding Group-wise Differences. Assuming that we have a black-box procedure
to estimate a parametric model on the SPD manifold available, in many tasks, such
an estimation is merely a segue to other analyses designed to answer scientifically
meaningful questions. For example, we are often interested in asking whether the
temporally coupled model estimated using the procedure above differs in meaningful
ways across groups induced by a stratification or dichotomous variable (e.g., gender
or disease). For instance, is the ‘slope’ in a structured response space statistically
different across education level or body mass index? While existing work in graphical
model estimation is mature, the literature describing hypothesis tests in this regime
(Städler and Mukherjee, 2012; Belilovsky et al., 2015) is relatively nascent. Given that
such questions are simpler to answer with alternative schemes (with assumptions on
the distributional properties of the data), e.g., structural equation modeling, latent
growth models and so on (Ullman and Bentler, 2003; McArdle and Bell, 2000), it
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seems that the unavailability of such tools is limiting the adoption of such ideas in a
broader cross-section of science. Here we will seek to address this gap.

Needles in Temporal Haystacks. If we temporarily set aside the potential value
of a hypothesis test framework for temporal trajectories in graphical models, we
see that from an operational viewpoint, such procedures are most effective when a
practitioner already has a precise scientific question in mind. In reality, however, many
data analysis tools are deployed for exploratory analyses to inform an investigator
as to which questions to ask (which subsets to test). Being able to “localize” which
parts of the model are different across groups over the entire time window can be
very valuable, and it is this feature identification that we will study here. This ability
actually benefits statistical power as well. Notice that when the stratified groups are
not very different to begin with, e.g., healthy individuals with presence or absence
of a genetic mutation, the effect sizes are likely to be poor. Here, while the trends
identified on the full precision matrix may still be different (i.e., there may be a real
signal associated with a grouping variable), they may not be strong enough to survive
significance thresholds. Ideally, what we need here are analogs of widely used “scan
statistics” for our hypothesis testing formulations for temporal graphical models — to
identify which parts of the signal are promising. Then, even if only a small subset of
features were different across groups over all time, we may be able to identify these
differential effects efficiently. This benefits Type 2 error, provides a practical turnkey
product for an experimental scientist, and makes up the key technical results of this
chapter.

Foundations of our work can be traced back to fundamental developments made
by Ulf Grenander across fields of study. Early work with Rosenblatt on the analysis
of stochastic processes and time series first brought to light the fundamental issues
of linear modeling in Euclidean space, and demonstrated that in many cases it is
necessary to develop methods that take explicit advantage of the inherent structure
within data (Grenander and Rosenblatt, 1957). Further pioneering work on the
statistical analysis on Lie groups (Grenander, 2008) provides the basis of the Rie-
mannian statistics mentioned above. Modern hypothesis testing of these structured,
manifold-valued data in image analysis is built upon the his joint work (Grenander
and Miller, 1998). Here, we marry modern developments in these areas, using recent
strides in linear model fitting on manifolds and statistical testing of structured data
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to develop groupwise testing procedures for longitudinal covariances. Concurrent
to this work, Su et al. (2014) and Zhang et al. (2018) have developed similar methods
of analyzing the statistical properties of trajectories on the SPD(n) manifold via the
transported square-root vector field. While here we focus on a simple approach to
enable localization, these developments can be incorporated into this construction.

Contributions. Briefly, we provide (i) a simple and efficient parametric procedure
for modeling temporally evolving graphical models, (ii) a hypothesis test for identi-
fying differences between group-wise estimated models, and (iii) a scan algorithm to
identify those subsets of the features which contribute to the group-wise differences. Together,
these ideas offer a framework for identifying group-wise differences in temporally
coupled graphical models. From the experimental perspective, we find scientifically
plausible results on a unique longitudinally tracked cohort of middle-aged (and
young elderly) persons at risk for Alzheimer’s disease due to family history, but who
are otherwise completely cognitively healthy.

The rest of this chapter is organized as follows. In Section 3.2 we present an efficient
manifold regression procedure for modeling covariance trajectories, which serves as
a blackbox module in our hypothesis testing framework. In Section 3.3, we define
our main hypothesis test for group difference analysis over covariance trajectories.
In Section 3.4, we present a set of technical results describing our localization proce-
dure based on scan statistics, as well as derive suitable size corrections to compare
across feature subsets. Sections 3.5, 3.6, and 3.8 conclude this chapter with empirical
evaluations of our model on synthetic data, various types of demographics/behavior
data collected longitudinally in the United States from publicly available resources,
and finally, our analysis on a unique longitudinal dataset (followed from 2001 to
2017) from a preclinical Alzheimer’s disease study involving approximately 1500
individuals.

3.2 Characterizing Covariance Trajectories
Our main statistical testing framework, to be described shortly, needs an efficient
means for calculating a “trajectory” of the feature-by-feature interaction graphs over
time for the given longitudinal data. We now describe a scheme which offers this
capability. Let Xt ∈ Rnt,p be the design matrix of all nt samples at time t, where
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t ∈ {1, . . . , T}, and T is the total number of distinct timepoints. We wish to capture
the trends in the relationships between the features as a function of t. To evaluate the
groupwise differences in changes of such interactions, we make use of the fact that
these interactions are commonly captured by correlation or conditional independence,
represented by the covariance matrix (with normalized features) and the precision
matrix (the inverse of covariance matrix).

Here we simply use the covariance matrix for each timepoint t to denote the
interaction between features, Ct = cov(Xt). Our goal now is to estimate the parameters
of the function, t→ Ct. We may vectorize the covariance matrix and apply a linear
model; its parameters will give the trajectory in “vectorized covariance space” as we
scan through t. But these predictions are not guaranteed to be valid SPD matrices
and even if a projection is performed to obtain a covariance estimate, distortions
introduced by the process may be significant (Fletcher, 2013). It is well known that
classical vector space models tend to be suboptimal in the manifold setting (covariance
matrices live on the SPD manifold) since they use Euclidean metrics which are defined
in the ambient space. For manifold-valued data, Riemannian metrics are shown to
be superior in many applications (Fletcher and Joshi, 2007; Banerjee et al., 2015;
Jayasumana et al., 2013; Tuzel et al., 2007), and are increasingly being deployed
in machine learning and statistics. We will utilize an appropriate statistical model
informed by the manifold-structure of the data and then derive a hypothesis testing
procedure to detect groupwise difference in the changes of interactions between
features in longitudinal analysis.

Riemannian Manifold Regression

Several regression models for manifold-valued data have been proposed, a majority of
which are nonparametric (Jayasumana et al., 2013; Banerjee et al., 2015). Because of the
longitudinal nature of our dataset (and recruitment considerations in neuroimaging
studies), sample sizes do not exceed a few hundred participants (typically much
smaller). We have found that generally, in this regime, parametric methods are better
suited and also offer other benefits for downstream applications. Next, we will give
a simple parametric model for this problem. Let x and y be vectors in Rp and Rp′

respectively.
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Figure 3.1: Group-wise MMGLM: The left and right figures represent two linear
models on the SPD(p) manifold. Points xi in the tangent space are our covariate
or predictor, and points yi in the manifold space represent SPD(p) matrices. In
our regression setting, we wish to minimize the error (brown curves) between the
estimation and the sample points. Because each linear model has a different base
point, the trajectories cannot be directly compared as in the Euclidean setting.

Definition 3.1. (Standard GLM.) The Euclidean multivariate multilinear model is

y = β0 + β1x1 + β2x2 + . . . + βpxp + ϵ (3.1)

where β0, βi and the error ϵ are in Rp and x = [x1 . . . xp]T are the predictor variables.

Henceforth, we will use the terms covariate and predictor interchangeably to de-
scribe those specific features we wish to control for in our model (e.g., time-points in
our experiments). For manifold-valued data, we adapt the formulation proposed by
Kim et al. (2014).

Definition 3.2. The Manifold Multivariate General Linear Model (MMGLM) is defined as

min
b∈M,∀j,V j∈TbM

1
2

N∑
i=1

d(Exp(b, Vxi), yi)2, (3.2)

where V xi := ∑n
j=1 V jxj

i , and d(·, ·) is the geodesic distance between ŷi := Exp(b, Vxi) and
yi.

This formulation generalizes (3.1), by replacing the intercept β0 and each vector
βj for a covariate with a base point b ∈M and a geodesic basis V j ∈ TbM respectively.
The geodesic basis V j at b parameterizes a geodesic curve Exp(b, V jxj). Intuitively,
this model is a “generalized” linear model with the inverse exponential map Exp−1

(or logarithm map Log) as a ‘link’ function (Kim et al., 2014; Cornea et al., 2016).
When the covariate/predictors are univariate, we will obtain a single geodesic curve,
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modeled via the so-called Geodesic Regression (Fletcher, 2013; Shi et al., 2009; Zhu
et al., 2009; Yuan et al., 2012).

Efficient Estimation of Trajectories

The objective in (3.2), can be solved by both gradient descent (Fletcher, 2013; Kim
et al., 2014) and MCMC methods (Cornea et al., 2016). Unfortunately, these schemes
can be expensive, especially when the dimension of the manifold is large. Further, if
the algorithm needs to be run a large number of times, the computational footprint
quickly becomes prohibitive. Motivated by these considerations, we use a so-called
log-Euclidean approximate algorithm introduced in Kim et al. (2014) with some
adaptations, which requires mild assumptions on the manifold-valued data.

Recall that in classical ordinary least squares (OLS), the regression curve goes
through the mean of covariates and response variables, i.e., y− ȳ = β(x− x̄). Similarly,
we assume that geodesic curves go through the mean of response variables on the
manifold. Then, the base point, or intercept, “b” in (3.2) can be approximated by
the manifold-valued mean of the sample points, the Karcher mean (Karcher, 1977). The
propositions derived from Kim et al. (2014) lead directly to the following.

Proposition 3.3. Let C̄ be the unique Karcher mean of a sufficiently close set of covariance
matrices that lie on a curve Ω. Then C̄ ∈ Ω, and for some tangent vector V ∈ TC̄M and each
C, there exists x ∈ R such that C = Exp(C̄, V x).

This allows us to bypass the fairly involved variational procedure to estimate the
base point b.

With this approximation of b̂ via ȳ, the remaining variables to optimize are the
tangent vectors V . We do so by taking advantage of log-Euclidean schemes. Once
the base point is established as the Karcher mean, each data point on the manifold is
projected into the tangent space at that point: Log(ȳ, y). These “centered" points ỹ are
now Euclidean, and if the covariates are centered as well (x̃), a closed form solution
exists in the standard form of V = ỹx̃⊤(x̃x̃⊤)−1 (ordinary least squares).

In this setting, it is often assumed that two points y1, y2 have a distance defined as
d(y1, y2) := ∥Log(y1, y2)∥y1 ≈ ∥Log(b, y1)− Log(b, y2)∥b. However, on SPD manifolds
with an affine invariant metric, each tangent space has a different inner product
varying as a function of the base point b, i.e., ⟨u, v⟩b := tr(b−1/2ub−1vb−1/2). This makes
comparison of trajectories difficult without moving to tangent bundle formulations.
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This issue is discussed in some detail in Muralidharan and Fletcher (2012); Hong
et al. (2015). However, note that

Remark 3.4. When the base point b is the identity I , then the inner product is exactly the
Euclidean metric ⟨u, v⟩b := tr(b−1/2ub−1vb−1/2) = tr(uv) = tr(uT v).

This follows from the fact that u and v are symmetric matrices on SPD(p). We
take advantage of this property through parallel transport. Specifically, we can bring
all of the data to TIMwhich will allow for a meaningful comparison of two tangent
vectors from different base points. Similar schemes have been used for projection on
submanifolds in Xie et al. (2010) and other problems (Sommer et al., 2014). With a
fast algorithm to compute (3.2) available, we can now accurately model longitudinal
trajectories of covariances matrices. Our statistical procedure described next simply
assumes the availability of some suitable scheme to solve the manifold-regression
as defined in (3.2) efficiently and does not depend on particular properties of the
foregoing algorithm.

3.3 Test Statistics for SPD(n) Trajectories
With an algorithm to construct a regression model for covariance matrix responses
in hand, we can now describe a key component of our contribution: a test statistic
which allows addressing the main question of interest: Is the progression/trajectory of
covariance matrices (over time) different across two groups? In the standard two-sample
testing problem, a hypothesis test is set up to check if the parameters of each group
are significantly different:

H0 : θ1 = θ2 vs. HA : θ1 ̸= θ2 (3.3)

Recall that in a general linear model (GLM), when testing for mean group differences,
the test parameters are the regression slopes from a standard GLM fit. In our setting,
the parameters of interest are the population covariance trajectories estimated from
the manifold regression in (3.2), see Figure 3.1. While the trajectories and the slopes
are related, note that our parameters are estimated on the manifold. Two unique
manifold trajectories, when projected as simple multivariate responses in Euclidean
space, may not be significantly different under the GLM hypothesis testing framework,
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as has been observed by Du et al. (2014). Returning to our longitudinal trajectory
formulation, we have the following naïve Covariance GLM:

Definition 3.5. Let vec(Cg,t) be the vectorized covariance matrix at timepoint t for group
g ∈ {1, 2}. Then the naïve Covariance GLM is defined as

vec(Cg,t) = β0
g + βgt + ϵ (3.4)

with the slope θ = β in the hypothesis test in (3.3), and vec(·) is the vectorized form of the
input matrix.

With this model, hypothesis testing reduces to a simple difference of slopes, which
is well-studied in classical statistics literature.

Definition 3.6. (Seber and Lee, 2003) Let β1,β2 be the multivariate slopes calculated from
estimating (3.4). Then an α-level hypothesis test rejects the null hypothesis β1 = β2 when
L > χ2

p|1−α, where

L = (β̂1 − β̂2)Σ−1(β̂1 − β̂2) (3.5)

Knowing that the response space is structured, i.e., our covariance matrices lie on
the SPD manifold, we seek a more appropriate test and corresponding test statistic
which adequately captures this knowledge.

Observe that we can directly apply the manifold regression in Section 3.2 to solve
for a linear model on the manifold. That is, we construct the manifold GLM as

Definition 3.7. Let Cg,t be the covariance matrix at timepoint t for group g ∈ {1, 2}. Then
the Longitudinal-Covariance GLM (LCGLM) is defined as

Cg,t = Exp(bg,Vgt) (3.6)

with bg and Vg being the base point and tangent vector respectively, as described in Section
3.2.

But instead of solving p(p − 1)/2 independent regressions, now we must con-
currently solve for the entire manifold-valued response variable. In this case, we
cannot directly compare our trajectories because they lie in different tangent spaces.
To accurately compare two tangent vectors, we must parallel transport both vectors
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to the same tangent space. Once they are both in the same space, we can construct a
simple test statistic for the trajectory difference.

L = ∥Γb1→IV1 − Γb2→IV2∥2
I (3.7)

Recall that the inner product at the Identity I coincides with the Euclidean metric.
This can now be naturally interpreted as a difference of slopes, and together with a
standard Euclidean Normal noise assumption yields the following hypothesis test.

Proposition 3.8. Assume that Γb→IV is normally distributed N(0, I). Then the statistic
defined in (3.7) follows a χ2

p distribution with p degrees of freedom, and the threshold test in
3.6 is an α-level hypothesis for the covariate trajectory group difference.

Proof. The proof of this follows directly from the definition of (3.7). The definition
for L can equivalently be written as (Γb1→IV1 − Γb2→IV2)⊤I(Γb1→IV1 − Γb2→IV2), and
if the normal distribution assumption holds, it is equal to (3.5) with Σ = I .

Incorporating First-Order Differences

In many real world situations, first-order information in the data is often valuable
in identifying group differences. Restricting our analysis to only the second-order
interactions, i.e., covariances, may be inefficient (or sub-optimal) when the mean
signal difference between groups is large. Our construction easily extends to these
cases. Particularly, the product space over both means and covariances is inRp×SPD (p).

Remark 3.9. The typical GLM on the first order information is defined in the standard
Euclidean space. So, computing the regression in the product space Rp× SPD (p) amounts to
simply computing the regression on the first and second order statistics (mean and covariance)
separately.

The above statement suggests that by applying the manifold regression to the
covariances and the standard regression model for the means, we are directly solving
the product space regression problem, incorporating both first and second order
statistics. However, in these cases, the statistic defined above in (3.7) does not directly
take into account the potential difference in means. However, given our Normal
noise assumption we can easily invoke the standard Gaussian multivariate likelihood
statistic for group differences.
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Definition 3.10. Let µ̂t, Σ̂t be the estimated mean and covariance from the standard linear
model and our manifold-covariance GLM respectively. Then the Gaussian likelihood of our
data X is

P (X|µ̂, Σ̂) =
T∏

t=1

nt∏
i=1

P (Xt|N(µ̂t, Σ̂t)), (3.8)

where Xt is the subset of our data collected at timepoint t. Additionally, we can define a
standard likelihood ratio test statistic as:

Lprod = P (X1|µ̂1, Σ̂1)P (X2|µ̂2, Σ̂2)
P (X1,2|µ̂1,2, Σ̂1,2)

(3.9)

This statistic is again χ2
p-distributed (Seber and Lee, 2003), and an α-level hypoth-

esis test for group difference analysis can be defined in the same way as above. While
our manifold regression modeling is focused on the case of centered data (where
the mean signal may not be significantly different between the groups), we use the
product space construction, wherever appropriate, in experimental evaluations.

3.4 Localizing Group Differences for SPD(n)
Trajectories

The above procedure provides a precise mechanism to derive a statistic from the
group-wise covariance matrix trajectories. However, when the effect sizes are poor,
any scheme operating on the trajectories of the full covariance matrix may still fail to
identify group differences (as is the case in our experiments). To improve statistical
power, localizing the process of computing the trajectories only to the relevant features
(subset selection) is critical. To this end, we consider the following global hypothesis
testing problem

H0 : ∀R,βR
1 = βR

2 vs. H1 : ∃R,βR
1 ̸= βR

2 ,

where β denotes the slope and R is the region of the covariance matrix which only
includes the relevant features, see Fig. 3.2. It turns out that by adapting Scan statistics
(Fan et al., 2012; Arias-Castro et al., 2011), we will be able to exclude the effect of
irrelevant regions of the covariance matrix in the calculated trajectories. By extending
this concept to graphs, we obtain an algorithm to identify subsets of features of the
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covariance matrix which show group differences that are otherwise unidentifiable, in
a statistically rigorous way.

Scan Statistics

Scan statistics are a valuable tool for structured multiple testing. In its simplest
form, we can consider a setting where we place a window (or box) over a region
R in an image and calculate a local statistic LR, e.g., an average or a response to a
convolution filter. Then, the window can be raster scanned at various locations in the
image (R) and the maximum over the set of local statistics is called the scan statistic.
Intuitively, if the image is assumed to be a Gaussian random field, we can set up a
null hypothesis using a critical value and finding a statistically significant signal (i.e.,
regions) corresponds to comparing the local region-wise statistic with the critical
value. Of course, there is flexibility in terms of specifying properties of the regions as
described next.

Definition 3.11. LetR be the collection of all possible structured regions, and LR be some
statistic over region R, a structured subset of R. The scan statistic is defined as L∗ =
maxR∈R LR.

Recent results in scan statistics show how size corrections can be used to increase
detection power in multi-scale analysis with nice guarantees (Walther, 2010; Wang
et al., 2016). To utilize these ideas for our hypothesis test, we must extend scan
statistics and these size corrections to a graph setting where the graph is induced by a
sparse estimation of the precision matrix, e.g., graphical lasso (or any other algorithm
of choice) over the features. To do so, structured regions R and a statistic LR on each
region must be defined on the graph. Intuitively, in our case, LR must capture the
“difference” in group-wise covariance trajectories. As we will describe shortly, it is in
the context of this statistic where we utilize the LCGLM (3.6), which will be invoked
at the level of individual regions R, one by one.

Let G := (V , E) be a graph over the features (represented in the covariance matrix)
with vertex set V (to avoid overlap with tangent vectors) and edge set E. We define
the structured region R ⊆ G as a connected subgraph of G corresponding to the
selection of those vertices as our feature subset (block of the covariance matrix, see
Fig. 3.2). A natural question is whether such an enumeration is tractable if the
number of connected subgraphs R is exponential. It turns out that if we make a
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mild assumption on the graph, the number of induced regions can be shown to be
polynomially bounded. Further, it then naturally provides a size correction, the analog
for a multiple testing adjustment.

In our motivating application, the group differences we seek to identify will involve
a cohesive set of features that will be connected to each other, by definition (large
changes in covariances indicate dependent features). Based on this observation, we
assume that the true localized subgraph is a “ball” subgraph.

Definition 3.12. A ball subgraph consists of nodes with a given radius r from a particular
node (see Fig. 3.2). The collection of ball subgraphs is defined as

R = {B(v, r) : v ∈ V and r ∈ N} (3.10)

where the ball subgraph B(v, r) := {v′ ∈ V : d(v, v′) ≤ r}, and d(v, v′) is the minimum
length path connecting v and v′.

With this assumption, it can be verified that we now only need to search a polyno-
mially bounded set of regions.

Remark 3.13. The number of unique ball subgraphs in any graph G is bounded above by
D|V|, where D is the diameter (longest chain) of the graph G.

On these regions (i.e., blocks of covariance matrix), we will invoke LCGLM to
provide us a statistic LR. This is just the difference in slopes of the calculated manifold
regression across groups in (3.7). We will iteratively obtain this statistic for distinct
regions R and find subgraphs that differ in their trajectories across groups using a
size correction for hypothesis tests.

Let us revisit the standard linear model setting and assume that our slopes βR
g

correspond to the subset of slopes from features in R, and β̂R
g is an estimate of that

slope. In this case, we have the following statistic (see e.g. Seber and Lee (2003)),

(β̂R
1 − β̂R

2 )Σ−1
R (β̂R

1 − β̂R
2 ) ∼ χ2

|E(R)|, (3.11)

where Σ−1
R is the covariance matrix of β̂R

1 −β̂R
2 , and E(R) denotes the number of edges

among vertices in the subgraph R. With a normal noise assumption, this covariance
will be identity and the statistic would simply be the ℓ2-norm difference as in the
classical analysis. To make the statistics comparable across different sizes, we use the
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Figure 3.2: (left) A region of the sparse precision matrix, (center) The corresponding
subgraph of that region, along with balls of varying radius from the root node E,
(right) The ball subgraph constructed with r = 1. These subgraphs with bounded
radius act as the structured regions on which scan statistics can be applied.

standardized version of a χ2
|E(R)| distribution,

LR = (β̂R
1 − β̂R

2 )Σ−1
R (β̂R

1 − β̂R
2 )− E(R)√

E(R)
. (3.12)

We can extend this analysis to our manifold setting.

Definition 3.14. For a given structured region R, the region-based LCGLM is written as

(bR
g ,V R

g ) = arg min
(bR,V R)∈T MR

E
[
d(Exp(bR,V Rtg), CR

g )2
]

(3.13)

where CR
g is the covariance matrix subblock defined by features included in R for group g (tg

is our univariate predictor, i.e., time).

To compare the group trajectories, we first parallel transport each tangent vector
to the identity as described in §3.2 and then compute the statistic in (3.7) given as
∥ΓbR

1 →IV
R

1 − ΓbR
2 →IV

R
2 ∥2

I . In the case of the product space construction, we apply the
test in (3.8) to the data subset corresponding to the features in region R, with the
same correction as in (3.12).

Summary. We now have a region-based statistic for the manifold regression setting
that is approximately normally distributed N(0, 1), allowing effective comparison
across differently-sized regions.
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Size Correction

A final unresolved yet important issue is that we must correct LR based on the number
of edges E(R) in R. This has a direct consequence on detection power. Observe that
the normalization for size correction should be determined by the null distribution
of LR, i.e., when there is no slope difference in the trajectories between groups. In
order to derive a correction, we need to characterize the behavior of scan statistics
within roughly similar regions, maxR∈R(A) LR, whereR(A) is the collection of region
Rs with similar size as E(R),

R(A) = {R ∈ R : A/2 < |E(R)| ≤ A}. (3.14)

Clearly, the behavior of maxR∈R(A) LR depends on the “complexity” ofR(A). A clear
understanding of how similar subgraphs relate to each other leads directly to a
correction tied to their relative sizes.

To investigate the complexity ofR(A), we define the following quantities.

Definition 3.15. The distance between subgraphs R1 and R2 can be given as

d(R1, R2) = 1− |E(R1) ∩ E(R2)|√
|E(R1)||E(R2)|

(3.15)

Definition 3.16. Let the ϵ-covering number of R(A), denoted by N(A, ϵ), be the smallest
integer such that there is a subsetRapprox(A, ϵ) ofR such that

sup
R1∈R(A)

inf
R2∈Rapprox(A,ϵ)

d(R1, R2) ≤ ϵ (3.16)

where |Rapprox(A, ϵ)| = N(A, ϵ).

We can verify that all regions inR(A) can be approximated by regions inRapprox(A)
with reasonably small error. From the definitions, notice that the complexity ofR(A)
is reflected by N(A, ϵ). If N(A, ϵ) is nicely bounded (as is the case here), scan statistics
can be calculated very efficiently (Lemma 3.18).

Before stating this result, we make a mild assumption on our graph. For any ball
subgraph, the edges around its center are not too sparse, compared to the edges in
the outer region of the ball subgraph, i.e., hard on the inside, soft on the outside. This
yields,
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Figure 3.3: (Left) Chain, ring and 2D lattice graphs that satisfy the Avocado Assump-
tion. (Right) Star graph that does not satisfy the property: from the center node the
graph is “too dense on the outside."

Assumption 3.17. (Avocado) There exist constants S and H such that, for any r/2 ≤ r′ ≤ r

and v ∈ V ,

|E(B(v, r′))|
|E(B(v, r))| ≥ H

(
1− |E(B(v, r − r′))|

|E(B(v, r))|

)S

. (3.17)

We see that this assumption holds for many classes of graphs: a ring graph satisfies
this condition when H = 1 and S = 1 and the 2-D lattice satisfies this condition when
H = 1/4 and S = 2 (see Fig. 3.3). With this assumption, we have the following result
for the ϵ-covering number N(A, ϵ).

Lemma 3.18. Let |E| be the total number of edges in G. If (3.17) holds and A is given, then,
for a constant CH,S which only depends on H and S in (3.17),

N(A, ϵ) ≤ CH,S
|E|
A

(1
ϵ

)S+1
. (3.18)

The proof of this result follows from our ball-subgraph construction and our
Avocado assumption and is provided in Appendix A.1.

Intuitively, this result upper bounds the number of graphs that are necessary to
search over to completely exhaust the search space of subgraphs. With this result, we
can now construct a suitable size correction. Following the work of Walther (2010)
and Wang et al. (2016), we can increase the power of our test by using the following
statistic:

T ∗ = max
R∈R

LR − 2

√√√√log |E|
|E(R)|

 . (3.19)

The significance of this size correction is that we now have a single critical value for each
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candidate subgraph, regardless of the subgraph size. Our final test is defined as I[T ∗ > qα],
where qα is the α-level quantile of T ∗ under the null hypothesis (that no region is
truly significant across groups). By construction, we can control the type 1 error at a
specified α-level.

Under the alternative hypothesis of this framework, it is important to note that
in many cases, large subgraphs that subsume smaller significant graphs may also
have large test statistics, and our hypothesis test only indicates the existence of some
significant region. To identify or localize the smaller subsets, we follow the procedure
from Jeng et al. (2010), by beginning with the subgraph with the largest test statistic
and iteratively removing overlapping subsets from the total set of subgraphs. This
requires testing each regional/local statistic, (LR − 2

√
log(|E|/|E(R)|)) against qα.

Under this procedure, we can control the weak family-wise error rate (wFWER) if we
view our problem via the lens of multiple testing. The weak FWER is the probability
of false discovery under the null hypothesis. To see that this is inherently controlled,
note

P(FN ≥ 1|H0) = P(T ∗ > qα|H0) ≤ α, (3.20)

where FN is the number of false discoveries under the null hypothesis. With this
correction at the group difference level, we completely avoid any multiple compar-
isons issues that would arise in the case of a test for each subgraph. In addition to
controlling the false positive rate, we have the following guarantee on identifying truly
significant regions under the normal noise assumption.

Theorem 3.19. If (3.17) holds and the number of edges in the candidate subgraph is larger
than log2 |E|, i.e.,

|E(R)| ≫ log2 |E| ∀ R ∈ R, (3.21)

then the critical value qα satisfies
qα = O(1). (3.22)

Moreover, as |E| → ∞, if a subgraph R0 obeys

(βR0
1 − βR0

2 )T Σ−1
R0 (βR0

1 − βR0
2 )√

|E(R0)|
≫ 2

√√√√log |E|
|E(R0)|

, (3.23)
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then as |E| → ∞,

P

LR0 − 2

√√√√log |E|
|E(R0)|

> qα

→ 1. (3.24)

The full proof of this result follows a generic chaining argument (see, e.g. Tala-
grand (2006)) along with application of concentration inequalities and union bounds,
and can be found in Appendix A.1.

Summary. At a high level, this result directly characterizes the behavior of T ∗ under
the null hypothesis H0 and the alternative hypothesis H1, respectively. We see that
(3.22) implies that T ∗ can roughly be seen as a constant under the null hypothesis,
and under the alternative hypothesis when (3.23) is satisfied, the test based on T ∗ is
consistent, see (3.24).

Workflow for conducting hypothesis tests on temporal trends of
graphs

With these guarantees, our full workflow is as follows. First, we use an oracle pro-
cedure to generate a graph over our features that roughly captures the conditional
independences. Any procedure that provides a conditional independence graph is
sufficient. Next, for each ball subgraph over this graph, we compute the Longitudinal-
Covariance GLM over these features for both groups, and compute the statistics
outlined in Section 3.3. We then compute the size-corrected statistic, and compare
against the single critical value. For all regions that pass this threshold, we apply
the procedure from Jeng et al. (2010). This workflow shows how to conduct hy-
pothesis tests on temporal trends of large covariance matrices, with improved power
and bounded Type 1 error. Additional implementation details can be found in the
Appendix A.2.

3.5 Localization Evaluation: Trends of Tobacco Usage
Across Gender

We begin our empirical analysis of the model by first applying the subgraph localiza-
tion procedure by itself (standalone), separate from our manifold regression scheme.
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Figure 3.4: The covariance trajectory pipeline. A group of features is selected using
scan statistics, manifold trajectories are fit to both groups, and a statistic is computed
and tested.

In this case, our statistic is derived from only Generalized Linear Models (GLM)
constructions, where the β̂R

g in equation (3.12) is the slope estimated from fitting
standard first order linear models. Identifying the differentially varying subgraphs
across groups in this way is similar to a simpler version of the planted clique identifi-
cation problem (Arora and Barak, 2009), where the clique we are trying to identify
corresponds to those nodes whose slopes vary significantly across groups.

Data. The Center for Disease Control (CDC) provides extensive statistics regarding
tobacco and alcohol usage across the US. This data has been collected systematically
for the last few decades and is publicly available (includes demographic information
and gender). As a simple application of our proposed framework, we may pose the
following question: which “sub-groups” of states tend to evolve differently in their
correlation (pertaining to tobacco/alcohol usage) over time? Our framework extends
easily to answer this question. In this setup, the oracle graph is simply the adjacency
graph of the continental US which will be used directly in our scanning procedure.
For this dataset, we have direct observations of node measures: the percentage of
males and females who reported smoking or drinking heavily in each state. Using



58

Figure 3.5: (left,top) States identified as having significantly different time-varying
tobacco usage across gender from 2001 to 2015. (left,bottom) States identified as
having significantly different time-varying heavy drinking use across gender from
2010 to 2015. (right) Linear regressions over tobacco usage fitted to the four states
defined by the ball subgraph centered at Louisiana. Best viewed in color.

gender as the group, we fit standard linear models for each candidate subgraph, and
compute the difference of gender-wise slopes statistic as described above. In Figure
3.5, we see the regions identified using our method, and interpret some of the tobacco
usage findings here.

In the northeast, we see that women have reduced their tobacco usage at a sig-
nificantly faster rate than men compared to the rest of the country. We suspect that
this may be at least partly tied to the development of women’s cigarette brands in
the late 1960s and 1970s followed by subsequent aggressive public policy campaigns
in the 1990s and 2000s to highlight health risks beyond pulmonary or cardiovascu-
lar diseases for women (e.g., infertility, reduced bone-density in post-menopausal
women). We also see that state-wide indoor smoking bans were put in place in the
Northeast ahead of many other states in the union. In the South, the trends among
men and women also seems to differ significantly. (see Figure 3.5). Apart from health
factors, the group-wise differences in the group-wise trends may also be explained
by a few reasons identified in a study in 2007 (Stehr, 2007) which found that as the
state sales tax on cigarettes changed (increased), women were significantly more
price elastic than men. Between 2006 and 2008, the cigarette tax increased dramati-
cally for all of the 4 states identified except for Louisiana, whose tax rate has remained
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constant. Additionally, while Arkansas did increase their cigarette tax in 2009, they
did not increase taxes in locations near borders shared with higher taxing states. These
intricate relationships among states lend credibility to the fact that our scan statistics
framework is indeed identifying interesting sub-regions, and suggests that the full
covariance-trajectory pipeline may be more appropriate if effects beyond the means
are relevant within an analysis.

3.6 Pipeline Evaluation on Simulations
We next evaluate the ability of our entire analysis pipeline to identify group differences
across temporally evolving covariance trajectories. In many existing analyses, the effect
of the mean differences may be stronger than the effect of the interaction matrix.
However, in cases where the mean signal is weak, we expect that the covariance effect
will be important. To evaluate our model in this regime, we perform a set of simulation
studies and also analyze a publicly available longitudinal dataset.

Simulations. We randomly generate SPD matrices from a ‘path’ of 4 discrete points
along the manifold, and use these data as population covariance matrices to generate
0-mean sample data. Table 3.1 shows the results of the hypothesis testing procedure
with 50 features averaged over 100 runs, where both the true number of features with
covariance trajectory differences, pt, and the number of samples per group, n, were
varied. As expected, our recovery rate increases nicely as a function of the number of
samples n and decreases as the size of region of change pt is increased when n is held
constant.

We compare our model to baseline methods that may be used in practice for the
foregoing group difference hypothesis test. In standard applications, general linear
models (GLMs) are often the first line of attack. When the covariates are assumed to
be independent, a simple linear model as in (3.5) may be suitable. However, when
the group difference is influenced by specific interactions between covariates, such
linear models require additional care. A typical solution is to introduce pairwise
interaction terms into the model – a choice between all possible interactions or specific
interactions specified by an expert. The first model has problems since the number of
samples n ≪ p2. In the second model, we depend completely on the user’s choice
of interactions, and must correct for multiple testing when testing different models,
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Figure 3.6: Correct null hypothesis rejections over 100 runs for three models. For
p = 50 features, each plot shows the rejection rate for pt ∈ {4, 8, 20} (from left to right)
respectively as a function of the number of sample points.

Table 3.1: Detection Accuracy of hypothesis test scheme (100 runs).

pt = 5 pt = 8 pt = 10 pt = 15
n = 10 0.06 0.02 0.04 0.03
n = 20 0.75 0.75 0.53 0.29
n = 50 0.99 1.00 1.00 0.80
n = 100 1.00 1.00 1.00 0.95
n = 200 1.00 1.00 1.00 0.98
n = 1000 1.00 1.00 1.00 1.00

at least partly reducing the power of the final test. Figure 3.6 shows the value of
our method over these models. For the interaction GLM case, we randomly select
interaction terms to include in the GLM, with size pt (the ground truth number of
variables in the interaction). In this way, we approximate the effect of an oracle
specifying to the GLM which terms may describe the underlying interaction. We
report the fraction of significance tests where a significance threshold of p ≤ 0.05 was
found for each model, averaged over 100 runs. We see that our proposed scheme
consistently achieves near-perfect results in terms of the percentage of null hypotheses
that were correctly rejected (i.e., there was a significant group-difference signal). The
power of scan statistics on graphs is particularly evident in the needle in haystack
setting where the true differential signal is small (pt ≤ 8) and the sample size is small
to medium. When the sample size is large and pt is also large, the standard linear
model with additional interaction terms starts to approach the statistical performance
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of our algorithm.

3.7 Baby Name Trends Over Time
In addition to the simulations above, we report results from a simple analysis of
how male/female baby names evolve over time over the last century. The United
States Social Security Administration provides a publicly available dataset listing the
frequency of the top 1000 baby names in each state for the last 106 years. We evaluate
our model in this context to examine which “sub-group” of states tend to evolve (or
change) in their “name agreement" (or correlation) over time between boy names
and girl names. Here, rather than calculating a sample covariance at each timepoint,
we calculate a rank correlation matrix instead. For example, if two neighboring Gulf
Coast states, say Georgia and Alabama, substantially agreed on both boys and girls
names in the period following the second World War, but gradually this agreement
declined over time for girls (but not boys), we expect that our scan statistics on graphs
hypothesis test will segment out this differential signal (in slope trends) from the
planar graph induced by the states sharing a border. Shown in Figure 3.7 are the
regions identified using our method, applied on only the rank correlations for the
top 10 names for both genders per state per year. Each highlighted region indicates
a sub-group where their “trends of correlation (or agreement/disagreement)” in
preferred baby names over the last century varies between boys and girls. For states
not identified by our model (in gray), we can conclude that the state-to-state name
preference-interactions may have still evolved over time but we have insufficient
statistical evidence to conclude that such trends (slopes) are different between boys
and girls.

3.8 Identifying Differentially Covarying Features in
Preclinical Alzheimer’s Disease

We now describe experiments and results focused on the key motivation of this work
— to facilitate analysis of a longitudinal study of individuals at risk for Alzheimer’s
disease (AD) where the statistical signal is weak (with small to medium sample
sizes). We describe the dataset details followed by the analysis and then interpret
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Figure 3.7: Contiguous states identified as having significantly different time-varying
co-occurrences between boys and girls baby names from 1910 to 2015. Best viewed in
color.

our conclusions in the context of scientific results that have been published in the
literature in aging and dementia.

Study background. We analyzed data from a cohort of individuals who have been
longitudinally tracked for at least three visits over multiple years, as part of an
ongoing study (since 2001) to understand the disease processes in the brain before an
individual exhibits signs of cognitive decline due to Alzheimer’s Disease (AD) (Sager
et al., 2005). The study, Wisconsin Registry for Alzheimer’s Prevention (WRAP) is
among the largest of its kind in existence, focused on “preclinical” AD, i.e., when
the individuals are still cognitively healthy, offering a window into the early disease
processes where treatments, drugs and interventions are likely to be most effective.
WRAP and its ancillary studies acquire neuroimaging data (MRI, PET with different
tracers, diffusion MRI) and various clinical test scores, genetic and demographic data
as well as clinical measures such as Cerebrospinal Fluid (CSF). Our analysis seeks to
understand subtle group-wise differences in longitudinal patterns of dependencies
between these measures at this early stage of the disease.

Dataset. The dataset consisted of 114 subjects with imaging data from at least two
types of imaging modalities: Positron emission tomography and diffusion weighted
Magnetic Resonance (MR) images. Positron emission tomography (PET) images were
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used to calculate, using well-validated pre-processing pipelines, the mean amyloid-
plaque load (an important biomarker for AD) in 16 different anatomical regions
of interest in the brain. Amyloid plaque is known to be an AD-related pathology
and generally precedes onset of cognitive symptoms. Separately, diffusion tensor MR
imaging (DTI) data were processed and used to calculate both Fractional Anisotropy
(FA) and Mean Diffusivity (MD) in 48 distinct regions (Mori et al., 2008). DTI images
provide information about structural connectivity between gray matter regions in the
brain. In addition to these 108 (48× 2 + 16) image-derived features, we also included
in the analysis the participant’s scores on a battery of cognitive tests, known to be
correlated with various neuropsychological functions (Lezak, 2004). Differences
were evaluated on various groupings of the subjects which were, for the most part,
based on known results in the literature. Specifically, gender, APOE (Apolipoprotein
E) genotype and amyloid positivity (based on thresholding the amyloid plaque
summaries) have all been evaluated as significant in AD studies (Racine et al., 2014)
but often such analyses involve a population covering a broader disease spectrum
where the signal is much stronger.

Is analysis of second order statistics necessary? In Figure 3.8, we present his-
tograms detailing the distribution of two critical cognitive tests, stratified across
various groups of scientific interest. Evaluating these distributions were the key
motivation for our exploration into the methods described in this chapter. Small
differences in means across groups regardless of grouping selection (i.e., stratification
variable), and the saturation that occurs at the ceiling of cognitive test scores and
other preliminary experiments conducted by us suggest that standard analyses are
not sensitive enough to identify subtle higher-order differences.

Results for Group difference analysis for individuals with imaging
data

We now describe, one by one, the components of the largest feature subset discovered
for each stratification scheme and highlight the main scientific findings. In most cases,
we provide a brief scientific interpretation of the results for the interested reader.
Additional details and results can be found in Appendix A.3.
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Figure 3.8: Histograms of the Boston Naming Test Scores and RAVLT Total Scores for
all time points for the 114 individual measurements across different group separations.
The means for each test score is not significantly different across different stratification
variable.

A) Graph Scan Statistics on slope differences across gender. The most significant
(based on region-score) subset identified by the gender grouping was between the FA
DTI measurement in the left cingulum gyrus as well as the scores on the Rey Auditory
Verbal Learning Test (RAVLT). In recent AD research, gender has been identified
as a factor in the progression of various pathology measures (e.g., incidence and
prevalence of AD is higher in women (Fratiglioni et al., 1991; Rimol et al., 2010)),
and has contributed to a formal NIH notice (NOT-OD-15-102). However, we note
that previous work in the field has not identified gender-related differences when
looking only at diffusion measures in the cingulum (Lin et al., 2014). Our algorithm
successfully identified longitudinal changes in interaction between these variables
which supports the earlier results, and provides some evidence that as men and
women age, their cognitive decline as measured by RAVLT manifests differently in
relation to the cingulum gyrus.

B) Graph Scan Statistics on slope differences across genotype. Next, we stratified
the cohort based on the genotype known to be most closely linked with AD, i.e., the
APOE (Apolipoprotein E) gene (Corder et al., 1993) — we inherit one APOE allele
from each parent; having one or two copies of the e4 allele increases a person’s risk of



65

Gender

Set 1 RAVLT Total (1-5)
FA Cingulum L

Set 2 FA Medial lemniscus L
FA Cingulum (hippocampus) L
FA Post thalamic radiation L

Set 3 FA Corticospinal tract R
FA Superior O.F. fasciculus R

Genotype: APOE4

Digit Span Backward Raw Score Stroop Color-word Score
PiB Cingulum Post L PiB Cingulum Post R
PiB Frontal Med Orb L PiB Frontal Med Orb R
PiB Precuneus L PiB Precuneus R
PiB SupraMarginal PiB Temporal Mid R

Table 3.2: Group difference across Gender (left) and Genotype APOE4 expression
(right). Three disjoint sets of features were identified as coavarying significantly
differently among gender, while one larger set was identified in the genotype stratifi-
cation.

getting AD whereas the rarer e2 allele is associated with a lower risk of AD. Using
this stratification, we obtain a low-risk and an at-risk group of individuals. Here,
we identified amyloid-load regions within the medial and lateral parietal lobes and
find that in the “low-risk" group, the covariances between Digit Span and Stroop
Color-Word scores (attention and concentration scores) and amyloid load moves
from strongly negative towards 0 as a function of age (Table 3.2). In the “at-risk”
group (APOE4), however, we find that as a function of age, the features become more
and more positively correlated. Existing studies have shown that the accumulation
of amyloid is significantly different across APOE4 gene expression (Mormino et al.,
2014), and our results provide some evidence that the expression of the genotype
may interact with cognitive scores as well, even at this early stage of the disease, when
the individuals in our cohort are cognitively healthy. The sets of features showing a
differential signal are presented in Table 3.2.

C) Graph Scan Statistics on slope differences across amyloid load positivity. As
briefly described above, amyloid load is an important biomarker for AD. For our



66

Amyloid Load (PiB Positivity)

Set 1 PiB Angular L/R PiB Cingulum Ant L/R
PiB Cingulum Post L/R PiB Frontal Med Orb L/R
PiB Precuneus L/R PiB Temporal Sup L/R
PiB Temporal Mid L/R PiB SupraMarginal L

Set 2 FA Cerebral peduncle R FA Cerebral peduncle L
MD Corticospinal tract R MD Corticospinal tract L
Trail-Making Test Part A Score MD Cerebral peduncle R
PET Cingulum Post R

Table 3.3: Group difference across Amyloid Load (PiB Positivity)

analysis, amyloid (or PiB) positivity is calculated using the mean amyloid PiB mea-
sures across all brain regions using a PiB PET image scan of the participant. When
we used this measure for stratification (threshold was set at 1.18, following Darst
et al. (2017)), our model identified fifteen of the sixteen PiB regions that were input
to the model when the density of the oracle graph was set to be high. This result is
as expected, but interestingly we find that controlling for the linear combination of
the features (through centering), the residual error still has significant signal with
the PiB positivity measure, indicating that amyloid burden interactions across brain
regions plays a very important role in AD progression (Hardy and Selkoe, 2002;
Hardy and Higgins, 1992; Tanzi and Bertram, 2005; Jack Jr et al., 2010). When the
sparsity of the oracle graph was increased, however, four neighboring regions, the left
and right corticospinal tract and the left and right cerebral peduncle were identified
on both PiB and DTI measures (supported by the literature (Douaud et al., 2011)),
together with Part A of the Trail Making Test (see Table 3.3) which happens to be
used in AD diagnosis (Albert et al., 2011). This suggests that changes in atrophy
within these regions, as measured by DTI, co-occur with changes in amyloid burden.
Additionally, because these regions are highly correlated with rough and fine motor
ability (Naidich et al., 2009), it seems plausible that amyloid positivity will lead to
higher ‘covariation’ in the regions associated with a measure of fine motor speed, i.e.,
the Trail Making Test.
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Expert Consensus Diagnosis

WAIS-3 LNS Raw Score Boston Naming Test Total Score
RAVLT A2 Raw Score RAVLT A3 Raw Score
RAVLT A4 Raw Score RAVLT A5 Raw Score
RAVLT A6 Raw Score RAVLT Delayed Recall Raw Score
Trail-Making Test Part A Trail-Making Test Part B
Clock Drawing Test Score CES Depression Scale Score

Table 3.4: Group difference localization across expert clinical diagnosis. With signifi-
cantly more samples and a larger set of cognitive tests, those above were identified as
significantly different across the expert consensus measure.

Results for for Group difference analysis for individuals with
Cognitive Testing data

In addition to the dataset presented above, we apply our method to a much larger
dataset consisting of approximately 1500 individuals with only cognitive testing data
collected in a longitudinal manner. Each individual was administered these tests
for between two and three time-points, yielding approximately n = 4000 samples
for our model. For each assessment, a conference of experts applied a diagnostic
label indicating normal cognition or mild cognitive impairment. Using this binary
classification, we can stratify our population for group difference analysis. We find
that among many different significant subsets, the covariance trajectory among the
scores on both parts of the Trail-Making Test and on all trials of the RAVLT test
explain a significant group difference. These have previously been shown to be the
most sensitive tests for early cognitive decline (Albert et al., 2001). Table 3.4 displays
the other tests identified by our algorithm, and additional experiments on this larger
cohort can be found in Appendix A.3.

Baseline. In various experiments on this dataset, when the MMGLM procedure is
performed for the entire feature set in totality (not utilizing any of the proposed ideas
based on scan statistics), and the null distribution derived using permutation testing,
the procedure yields no significance across any scientifically interesting group stratifications.
This implies that the ability to search over different blocks of the covariance matrix
is critical in identifying meaningful group differences in the trajectories, unavail-
able using alternate schemes. For instance, simpler strategies work well enough for



68

datasets such as ADNI – which includes diseased subjects as well as controls – where
the signal is stronger and even temporal modeling may be unnecessary. While the
scientific results need to be interpreted with caution and reproducibility experiments
on other similar datasets (both within the US and internationally) are in the planning
phase, we believe that the ability to localize differences in these interaction patterns
in a statistically rigorous manner is valuable and these findings can be investigated
standalone, via more classical schemes (e.g., structural equation modeling).

3.9 Conclusion
The analysis of datasets to identify where clinically disparate groups differ is perva-
sive in biology, neuroscience, genomics and epidemiological studies. We find that
graphical models are an ideal tool to analyze high-dimensional data in these areas
but have been sparingly used for the analysis of group-wise differences, especially
in a longitudinal setting. Motivated by an application related to longitudinal analy-
sis of imaging and clinical/cognitive data from otherwise healthy individuals who
are at risk for Alzheimer’s disease (AD), we show how a combination of manifold
regression with a generalization of scan statistics to the graph setting yields tools
that can be directly deployed. We present an efficient algorithm and develop the
theoretical results showing the regimes where its application is appropriate. In vari-
ous experiments, while the standard schemes are not sufficiently powered to detect
the signal, our proposed formulation is able to detect meaningful group difference
patterns, many of which have a clear scientific interpretation. We believe that these
results are promising for the neuroimaging application described and other regimes
where group-wise analysis is desired but the number of features is large. We will
revisit work in this chapter in some follow-up work, described in Chapter 7.
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Chapter 4

Enabling Temporal Neural Networks
via Geometric Tensor Representations

The statistical methods in the previous chapter work well with multivariate types of
data and scale reasonably well with many features. However, even though we have
a linear time scanning procedure, if the number of features reaches thousands or
more, computational feasibility can still be an issue. Particularly when dealing with
images, using the explicit pixel or voxel-level data is intractable. In these cases, deep
learning methods have proven to be extremely effective in modeling high-dimensional
data. Combined with methods for temporal modeling, some success has been seen in
modeling imaging trajectories. However, a separate problem emerges: the model size
grows very large, sometimes linearly in the length of the temporal sequence of interest.
In this chapter, we examine a novel tensor decomposition that reduces this model
size via a parameter subspace selection, enabling the modeling of high-dimensional
temporal medical imaging data with reasonable computational resources. Work
in this chapter originally appeared at the International Conference on Computer
Vision (Mehta et al., 2019a).

4.1 Introduction
Recurrent Neural networks (RNNs) and its variants were the de facto tool of choice for
modeling sequential data in machine learning and vision. However, these models have
been limited in their ability to model high-dimensional data. Part of the reason is that
recurrent structures often lead to large model sizes dependent on sequence length, and
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thus also require an equivalent amount of increased computation. While RNNs have
been successfully applied to video data in some cases, the strategy requires problem
specific innovations because of the large mapping necessary from inputs to hidden
representations. It is fair to say that the growth in the number of model parameters
in various types of recurrent models remains a bottleneck for high dimensional
datasets. Convolutional neural networks (CNNs), on the other hand, handle high
dimensional data far better and can reduce the dimension of an input significantly
by deriving rich feature maps. Most computer vision tasks involve some form of a
CNN within the architecture, but incorporating CNNs within recurrent structures
seamlessly to mitigate the RNN specific model size issues described above is not
always straightforward. Notice that a direct replacement of input and output layers
with CNNs leads to a shrinkage of the sequence length considerably (Srivastava et al.,
2015), and pre-training CNN layers may lead to poor local minima when we train
without using an end-to-end pipeline (Donahue et al., 2015). Some recent works
suggest the use of dilated convolutional networks for sequence modeling (Yu and
Koltun, 2015) to partly mitigate these issues, but this line of work is still developing
(Zhen et al., 2019). For model-size reduction, both for RNN style networks and
otherwise, PCA or random projections (Ye et al., 2005; Bingham and Mannila, 2001)
style “compression" ideas have also been used with varying degrees of success.

Tensor methods provide an interesting perspective on the effective degrees of
freedom afforded by a given network, acting as a surrogate for the actual “size” of
the architecture. Decomposition-based methods have been shown to enable low
dimensional representations of very high dimensional data (Hwang et al., 2018;
Novikov et al., 2017), and while these ideas were known to be effective in the “shallow"
regime much earlier, new results also demonstrate their applicability for deep neural
networks. In particular, a number of tensor based methods have been successfully
adapted for deep neural network design and compression (Cohen et al., 2016; Zhang
et al., 2017; Yu et al., 2017; Xiong et al., 2019a). Specifically, Yang et al. (2017) shows
that these methods can be very effective in reducing the parameter cost of weight
layers in RNNs, enabling simple video analysis tasks that previously would have
been computationally prohibitive.

There are a number of key reasons why the size of the model, especially in the
context of formulations for sequential data, is central here. Our goal is to design
rich sequential or recurrent models to analyze a longitudinal sequence of high di-
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mensional 3D brain images. This task raises two issues. First, unless the model size
is parsimonious, we find that merely instantiating the model with data involving
3D images over multiple time points, even on multiple high end GPU instances, is
challenging. Second, the eventual goal of medical image analysis is either scien-
tific discovery or generating actionable knowledge for patients. Both goals require
evaluating a model’s confidence via classical or contemporary statistical techniques:
for instance, how confident is the model in its prediction? Most, if not all, available
tools for assessing model uncertainty of deep neural network models have a strong
dependence on the number of parameters in the model. Therefore, even if the first
issue above could be mitigated by clever implementation ideas, purely as a practical
matter, the design of rich and expressive models with a small number of parameters
yields immense benefits for calculating model uncertainty.

Contributions. We tackle the problem of modeling sequential 3D brain imaging
data using recurrent/sequential models. Our development starts from well known
results on tensor decomposition. In particular, we make use of the tensor train rep-
resentation, which has been shown to be effective in several applications in vision
and machine learning. We derive a reformulation of the decomposition using or-
thogonality constraints and show that while this makes the estimation slightly more
challenging, it reduces the number of parameters needed significantly. With this
parameter subspace identified, we present a novel estimation scheme based on Stiefel
manifold optimization and demonstrate how the end to end construction yields bene-
fits for convergence and uncertainty estimation. Finally, from the empirical side, we
discuss how we enable analysis of and prediction using sequential 3D brain imag-
ing datasets, which to our knowledge is the first such result using deep recurrent
architectures.

4.2 Orthogonal Tensor Trains
Recall from Chapter 2 that a tensor X can be efficiently represented and operated on
via the tensor train decomposition. As described, a number of tensor train operations
with respect to approximation and projection require computing the QR decomposi-
tion of matricized cores. In the applications for which tensor trains were originally
developed, these operations were necessary (Oseledets, 2011; Klus et al., 2018). For
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modern neural network applications, where the tensor operator may be our target
of learning, it may be sufficient to treat each matrix product as its own variable, and
through the standard TT decomposition learn the cores along the product of Stiefel
manifolds.

A naïve approach may orthogonalize the reshaped cores (see (2.27)), and pro-
gressively push the upper triangular part of the core decomposition into the next
core, resulting in the following exact formulation with appropriate reshaping:

T = AL
1 AL

2 · · ·AL
d

= QL
1 R1A

L
2 · · ·AL

d = QL
1

(
R1A

L
2

)
· · ·AL

d

= QL
1 QL

2 R2 · · ·AL
d

= QL
1 · · ·QL

d Rd (4.1)

where [QL
1 , R1] = qr(AL

1 ), [QL
i , Ri] = qr(Ri−1A

L
i ), i ∈ {2, . . . , d}, and QL

i ∈ Rri−1ni×ri

with Ri ∈ Rri×ri . Each QL
i is a point on the Stiefel manifold given by St(ri, ri−1ni).

Here, the number of components in the product space of Stiefels is d, with the eventual
‘residual’ Rd ∈ R. This decomposition is exact and only requires a reshaping of the
tensor cores. If all ri = r, ni = n, then the total number of parameters needed is

d∑
i=1

[
nr2 − r(r + 1)

2

]
+ r(r + 1)

2

= dnr2 − d
r(r + 1)

2 + r(r + 1)
2

= dnr2 − (d− 1)r2 + r

2 ,

compared to the full format with dnr2 total parameters. It is important to note that in
this formulation, the TT cores themselves are not orthogonal. Reshaping is required
to bring the matricized form back to TT-cores of size ri−1 × ri, and in practice it is not
easy to perform simple TT-tensor multiplication in this form. Additionally, we now
need to optimize over Stiefel manifolds of a larger size, namely O(nr2).

A Nicer Tensor Train Approximation

Ideally, we would prefer a construction which keeps the standard TT-core format
and involves optimization over “smaller” Stiefel manifolds. Consider the following
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representation, in which each TT-core itself is orthogonal.

Definition 4.1. (Orthogonal Tensor Train) The Orthogonal Tensor Train is defined as

T (x1, . . . , xd) = Q1(x1) · · ·Qd(xd), (4.2)

where each Qi(xi) lies on the Stiefel St(mi, Mi), and mi = min(ri−1, ri), Mi = max(ri−1, ri).

While in this formulation the total number of components in the product space
of Stiefels is nd, the dimension of each manifold is significantly smaller, dependent
only on the core rank as opposed to the mode size. The total number of parameters, if
ni = n, ri = r, is

n
d∑

i=1

[
r2 − r2 + r

2

]
= dnr2 − dn

r2 + r

2 . (4.3)

When compared to the full TT representation, the Orthogonal Tensor Decomposition
(OTT) requires (r + 1)/2r ≈ 1/2 as many parameters. If ri = ri+1, then St(mi, Mi) =
SO(mi), where SO is the special orthogonal group.

This construction can be seen as an approximation to the full tensor train format,
in which the upper triangular part of each core is set to identity:

T (x1, . . . , xd) = A1(x1) · · ·Ad(xd)

= Q1(x1)R1(x1) · · ·Qd(xd)Rd(Xd)

≈ Q1(x1) · · ·Qd(xd) (4.4)

Is this useful? It is not obvious that this construction is useful at all. How much
is lost through this approximation? What is gained by using this construction? In
what follows, we demonstrate that we can approximate any tensor with bounded
norm using an OTT, and that with a full rank assumption and a trainable constant,
our formulation admits a solution with ϵ error.

Theoretical Analysis

We start by reshaping any tensor T to a matrix T M by grouping the modes into two
groups, T M ∈ Rn×m. We may fix this arbitrary matrix as T M = A ∈ Rn×m.
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Proposition 4.2. Given a 2D tensor A ∈ Rm×m, Aij ∈ [−1, 1], there exist sets of unit vectors,
{xi}m

i=1 ⊂ Rm, {yj}m
j=1 ⊂ Rm such that, ∀ϵ > 0, ∥A− Ã∥ < ϵ, where, ∀i, j, Ãij = xt

iyj .

Proof. Let A = USV T be the SVD of A. Let ϵ > 0, we will perturb S along the diagonal
to generate S̃ such that, ∥S − S̃∥ < ϵ. Let X = [xi] and Y = [yi]. We will first give an
algorithm to generate X̃ and Ỹ with each of its column being orthonormal such that,
X̃T Ỹ = S. Then, X = X̃UT and Y = Ỹ V T .

We begin with an algorithm for m = 3. Choose {x̃i} to be unit vectors and assign
ỹ3 = x̃1 × x̃2, ỹ2 = x̃3 × x̃1. Then, make ỹ2 and ỹ3 to be of unit length. Now, rotate
x̃2 in the plane spanned by {x̃1, x̃2} such that, x̃t

2ỹ2 = S̃22. Similarly, rotate x̃3 in the
plane spanned by {x̃3, x̃1} such that, x̃t

3ỹ3 = S̃33. Now, assign, ỹ1 = x̃2× x̃3 and make
it unit length. Now, fixing x̃2 and x̃3, the above steps are a continuous mapping, F

from S2 to [−1, 1], i.e., by changing different x̃1 ∈ S2, we will get different values for
x̃t

1ỹ1. Also, notice that, if, for a particular choice of {x̃i}, x̃t
1ỹ1 > 0, then, for the choice

of
{
−̃xi

}
, the above construction returns −ỹ2 and −ỹ3 and F returns, −x̃t

1ỹ1 < 0.
Thus if a ∈ F (S2), −a ∈ F (S2). Furthermore, 1 ∈ F (S2) and hence, −1 ∈ F (S2). As
S2 is connected and F is continuous, F (S2) is connected, and so, ∃ {xi}m

i=1 ⊂ Rm and
{yj}m

j=1 ⊂ Rm, s.t., (∀ {i, j}), x̃t
iỹj = S̃ij . Since ∥S − S̃∥ < ϵ and the choice of ϵ > 0 is

arbitrary, we can see that ∥A− Ã∥ < ϵ.
Using the generalization of cross product by exterior algebra, the above procedure

can be naturally extended to arbitrary m > 3.

A direct corollary of the above result allows approximating an arbitrary 2D matrix,

Corollary 4.3. Given a 2D tensor A ∈ Rm×m, there exists sets of unit vectors, {xi}m
i=1 ⊂ Rm,

{yj}m
j=1 ⊂ Rm and fixed constant c such that, ∀ϵ > 0, ∥A−Ã∥ < ϵ, where, ∀i, j, Ãij = cxt

iyj .

Proof. Given any arbitrary matrix A, define A′ = A/|A|∞. Then A′
ij ∈ [−1, 1], and by

Proposition 4.2 we can construct unit vectors xi, yj such that ∀ϵ > 0, ∥A′
ij − xT

i yj∥ < ϵ.
Then immediately ∀Aij , we have Aij = cA′

ij where c = |A|∞.

We also have the following directly from Proposition 4.2.

Corollary 4.4. Given a 2D tensor A ∈ Rm×m, with ∥A∥F ≤ 1, there exists a set of orthonor-
mal matrices {Bi} ⊂ SO(m) and a set of unit vectors {yj}m

i=1 ⊂ Rm such that ∀ϵ > 0,
∥A− Ã∥ < ϵ, where, ∀i, j, Ãij = 1tBt

iyj .
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Example 4.5. Applying the above result to OTT, equivalence is relatively straightforward to
show. Consider the problem of approximating a 4 dimensional tensor T with n1,2,3,4 = n = r.
Let Q1(x1) ∈ R1×n, Q2(x2), Q3(x3) ∈ Rn×n, and Q4(x4) ∈ Rn×1. By Corollary 4.4 we
can write two vectors indexed by x1, x2 and x3, x4 as T A(x1, x2) = Q1(x1)⊤Q2(x2) and
T B(x3, x4) = Q3(x3)Q4(x4) respectively. The multiplication of these vectors T A, T B again
yields a single element indexed by x1, x2, x3, x4, which can take any value between [−1, 1] by
Proposition 4.2. Then clearly the cores Q form an equivalent definition of X .

We can then apply Corollary 4.4 and find that the product of indexed orthonormal
matrices and orthonormal vectors with full rank can approximate any matrix with
bounded norm. Applying this to our OTT format, it immediately follows that with
the addition of at most dn constants in R we can approximate any arbitrary tensor.
While this addition would put the format well over the number of parameters in the
standard format, this provides sufficient evidence that, in typical learning settings in
which our model is already overparameterized, we can still capture the full expressive
power of the model class in which an OTT format is inserted.

Remark. It also important to note that the above calculation of dimensionality is
the intrinsic dimension. The number of actual allocated variables is indeed dn3 for an
exact formulation. It remains open to theoretically analyze the degradation of the
approximation as r < n.

Efficient Stiefel Optimization

Here, we describe how to compute an OTT approximation of a tensor T , which can
be posed as the following minimization problem.

min
{Qi(xi)}d

i=1

E =
∑
{xi}
∥T (x1, . . . , xd)−Q1(x1) · · ·Qd(xd)∥

s.t. Qi(xi)⊤Qi(xi) = Ip ∀i, xi (4.5)

Notice that this optimization is difficult because of the orthogonality constraint (Edel-
man et al., 1998; Collins et al., 2014). An efficient way to solve this is by doing the
optimization on the product of (compact) Stiefel manifolds: let it be denoted by PS .
We will use the product ℓ2 metric on this product space. Given x1, · · · xd, we perform
an optimization on the product of Stiefel manifolds to solve for {Qi(xi)} for i ∈ [1 . . . d].
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Figure 4.1: Gradient descent algorithm using the projection and retraction on the
Stiefel manifold. The update is applied to each core individually, allowing for smaller
manifold operations that would otherwise scale poorly with dimension.

We use a Riemannian gradient descent technique on this product of Stiefel manifolds
PS . Given {Qt

i(xi)} as the solution of the tth step, the (t + 1)th solution, {Qt+1
i (xi)},

can be computed using

{
Qt+1

i (xi)
}

= Exp
{Qt

i(xi)
}

,
∂E

∂
{
Qt

j(xj)
}
 , (4.6)

where Exp is the Riemannian Exponential map on PS . On PS , the product of Stiefels,
computation of Riemannian Exponential map is not tractable and needs an opti-
mization, in contrast to the SPD manifold discussed in Chapter 3. Hence, we use a
Riemannian retraction map as proposed in Kaneko et al. (2013).

Figure 4.1 and Algorithm 2 summarize this procedure. For each orthogonal core,
the gradient is computed with respect to the Euclidean ambient space and projected
to the tangent space at the current iterate. The update is constructed by moving back
to the Stiefel with the Riemannian exponential map.

Square Stiefels/SO(n)

In practice, when learning an OTT operator, we will primarily be setting the rank to
be fixed for all cores. The Stiefel manifold, St(n, n) with n = p is equal to the special
orthogonal group SO(n). The Riemannian Exponential map on SO(n) is the matrix
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Algorithm 2: Stochastic OTT Optimization
for t=1,…,T do

gt := df
dW f(Xmini−batch)

for Core Qi
t ∈ Wt and Core Gradient gi

t ∈ gt do
Gi

t = PTWt M(gi
t) ▷ Projection Step

Qi
t+1 ← exp(Qi

t, Gi
t) ▷ Retraction Step

end
end

exponential, computationally intensive to both compute and backpropagate through.
Hence, we use the Cayley map from SO(n) to SO(n), given by A 7→ (I − A) (I + A)−1,
where SO(n) (the space of n× n skew-symmetric matrices) is the tangent space of
SO(n) at identity. Although the Cayley map requires a matrix inverse, it is much
easier to handle using standard tools in modern toolboxes (e.g., TensorFlow, PyTorch).
Observe that the work in Helfrich et al. (2017) used the Cayley map for RNNs, but does
not make use of the sparse representation of a skew-symmetric matrix A ∈ SO(n).
In contrast, in our formulation we use the Cayley map as a mapping from R

n(n−1)
2 to

SO(n). This enables a strict reduction in the number of trainable/learnable variables
in a network, and provides a direct path through which gradients can be computed
and backpropagated. Algorithm 3 describes the procedure for constructing an OTT-
core. The Euclidean variable vector w is mapped directly to the upper triangular
part, defined as triu(·), of a new matrix R, and by subtracting its transpose, we arrive
at a skew symmetric matrix A. The Cayley map, as described above, maps to our
Orthogonal OTT Core.

Remark. Note that the Cayley map is not a bijective mapping between SO(n) and
SO(n) as the range is not the entire SO(n). This is because the Cayley map cannot
generate matrices with negative eigenvalue(s). Empirically, we do not find this to be
an issue when learning the OTT representation directly, and hypothesize this may
have desirable downstream qualities enabling better performance at training time
(positive definiteness is often desirable for fast convex optimization).

With this efficient approximation in hand, we are able to directly apply our OTT
formulation to architectures for a variety of applications.



78

Algorithm 3: Constructing an OTT Variable
Function OTT-Variable(d, nin, nout, r):

OTT ← ∅
for i ∈ 1, . . . , d do

for j, k ∈ 1, . . . , nin[i], 1, . . . , nout[i] do
OTT .append(OTT-Core(r))

end
end
return OTT

Function OTT-Core(r):
w ← Rr(r−1)/2

R← triu(w)
A← R−R⊤

Q← (I − A)(I + A)−1

return Q

0

5000

10000

15000

20000

0 100 200 300 400 500

Iteration

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r

Rank

2

5

10

Type

OTT

Riem−SGD

0

2

4

6

8

10

1 2 5 10 201 2 5 10 20

TT Rank

S
e

c
o

n
d

s
 p

e
r 

it
e

ra
ti
o

n

Method

OTT

Riemannian SGD

0e+00

1e+05

2e+05

3e+05

4e+05

5e+05

0 10 20 30

TT Rank

M
e

m
o

ry
 (

B
y
te

s
)

Type

OTT

TT

Figure 4.2: (left) Mean squared error for different TT-ranks, using both the Rieman-
nian formulation (2.28) and the approximate Stiefel formulation (4.1). (center) Effect
of TT-rank on per iteration runtime of both methods. OTT is significantly faster (10x)
than the Riemannian formulation. (right) Memory Dependence of both TT and OTT
constructions as a function of rank. The OTT formulation allows for models roughly
double the size of TT.

4.3 Evaluating performance on Simulations, Moving
MNIST and Video data

First, we evaluate how well our OTT formulation performs relative to existing meth-
ods, on synthetic datasets as well as other popular datasets used for sequential deep
models. All synthetic experiments were conducted using a Tensorflow implementa-
tion on an Nvidia Titan Xp GPU.

(A) OTT vs Riemannian SGD on synthetic data. To empirically verify the claims
in Section 4.2 and to evaluate the value of our OTT construction over the existing
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Riemannian SGD framework, we simulate a simple least squares problem with the
goal of learning a tensorized weight matrix,

min
WT T

n∑
i=1
||yi −WT T xi||.2

Here we use the naïve but exact OTT construction, using the optimization scheme in
Section 4.2. A weight matrix W is initialized to a random matrix with size 784× 625,
and samples are drawn from y = Wx. The matrix is reshaped as a tensor with modes
[4, 7, 4, 7]× [5, 5, 5, 5].

Results. Figure 4.2 shows the convergence rates of both methods with fixed learning
rates for various TT-ranks. (a) Quality and speed. For this toy problem, not only
is the OTT construction able to find a good solution, it is able to find it significantly
faster than Riemannian SGD. (b) Update steps. Additionally, we note that the time
per iteration is significantly shorter for the OTT construction. OTT allows for each
manifold update step to be performed on a low dimensional Stiefel, and so retraction
and projection is fast. The Riemannian method requires left orthogonalization and
QR decompositions of larger matrices, leading to a slower, TT-rank dependent run-
time, shown in Figure 4.2. (c) Memory footprint. Finally, we see in Figure 4.2 that
the memory consumption of OTT is quite modest compared to TT (which already
offers significant memory savings over alternative existing schemes). This may be a
beneficial feature when running a large sequential model on less expensive GPUs.
Given these results, we use a basic SGD update for TT in subsequent experiments.

(B) Moving MNIST. The moving MNIST dataset (Srivastava et al., 2015) consists
of handwritten digits moving within a specified larger image. We first demonstrate
that for simple sequences, reconstruction under a complete tensor train framework
is possible, and representing fully connected layers with an OTT layer reduces the
number of parameters without image degradation. Here, we use a vanilla RNN, with
a state size of 4096 and TT-Rank 64.

Results. Figure 4.3 shows the ground truth and reconstruction results for images
with size 256 × 256, where each sequence is of length 8, and the direction and ori-
entation of the digit is random. (a) Reconstruction accuracy and model size. The
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Figure 4.3: Sample ground truth (top) and reconstruction (bottom) of Moving MNIST
digit and fashion sequences of size 256× 256. We see good consistency between each
upper/lower rows for both datasets.

entire recurrent network is compressed with OTT layers for input-to-hidden, hidden-
to-hidden, and hidden-to-output maps. With a large state size of 4096, we are able to
nicely capture and rebuild the entire sequence with a significantly smaller model size.
(b) Scaling to larger images. This effective compression also allows us to scale up –
to significantly larger images of size 1024× 1024, with no loss in reconstruction quality,
without the need for more sophisticated convolutional architectures.

(C) Hollywood2. We find that these results extend nicely to LSTMs/GRUs and for
classification tasks as well. The Hollywood2 dataset (Marszałek et al., 2009) consists
of video clips from 69 movies labeled with 12 different actions from “answering the
phone” to “driving a car” (Figure 4.4). Following the preprocessing steps of Yang
et al. (2017), we feed resized clips of size 234× 100× 3× T to our model, where the
length of a sequence (number of frames) T ranges from 29 to 1496. We tensorize the
input as 10× 18× 13× 30 for all input sequences (padded to 1496) and the hidden
states as 4× 4× 4× 4, with TT and OTT ranks set as 4.

Results. Tensor trains here allow us to completely operate on the entire video
sequence. (a) Parameter size. The number of parameters in our model is a few
thousands (1864 for OTT, 3104 for TT) compared to millions needed for a standard
fully connected model. Accuracy comparison. Using Mean Average Precision
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Figure 4.4: Sample sequences from the Hollywood2 dataset. Labels are (Top) Answer
Phone, (Middle) Drive Car, and (Bottom) Get Out Car.

(MAP) as a measure of accuracy for this multi-label problem, we find that using
an OTT-LSTM or OTT-GRU in place of a TT-LSTM or TT-GRU leads to no significant
difference in MAP.

4.4 Identifying Differential Progression in AD
Motivation. The Alzheimer’s Disease Neuroimaging Initiative (ADNI, adni.loni.
usc.edu) provides a comprehensive dataset targeted towards understanding AD.
The goals of the initiative include measuring the development of the disease as a
function of different imaging modalities, other biological markers, and clinical and
neuropsychological assessments. Deep learning methods traditionally applied to
this corpus require imaging data to be heavily preprocessed into summary measures,
such as regions of interest. In other cases, based on the needs of the application (e.g.,
segmentation), the approach may operate with 3D image patches instead of the entire
image. The size of the images, especially when considered longitudinally, can be
impractical for modern deep learning frameworks unless some novel implementation
tricks are utilized.

Data. Our dataset consists of 522 subjects with Magnetic Resonance Imaging
(MRI) scans collected over three years. For each individual, an MRI was collected
annually, along with a battery of neuropsychological evaluations.

Pre-processing. Full head MRIs were processed using SPM12 Ashburner et al.
(2014). Each image was segmented/registered using the MNI152 template. Gray
matter probabilities were computed, and these gray matter density (GMD) images

adni.loni.usc.edu
adni.loni.usc.edu
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were used as input to our models. The processed image size was 121 × 145 × 121
(voxel size 1.5mm3), with 3 images per subject.

Model. At this scale, we use convolutional input and deconvolutional output
layers to incorporate local information with respect to reconstruction and prediction.
The architecture consists of a straightforward 3-state RNN with input-hidden, hidden-
hidden, and hidden-output layers replaced with TT and OTT layers. Input volumes
are passed through a 3D convolutional input network, with max-pooling layers and
ReLUs. Hidden states are passed through an output convolutional network consisting
of max-unpooling layers using indices saved from the input CNN. Strides were fixed at
1 with a kernel size of 3× 3× 3, with successive convolutions decreasing (increasing)
the number of channels by 2. Max pooling was applied uniformly to all 3 input
channels with a stride of 2. Adam optimization (Kingma and Ba, 2014) was used for
all ADNI experiments, with learning rate 1e−3, and decay rate 0.9 and 0.999 for the
first and second moments. TT and OTT layers were fixed with a rank of 64. Batch
sizes were fixed at 4.

Modeling gray matter progression in AD

Our first goal is to predict the next MR image given the previously seen ones. Im-
portantly, standard RNN constructions cannot easily handle inputs of this size. On
a single NVIDIA Titan Xp, the images must be downsampled by over 20× to allow
for a batch size of 4 in a standard LSTM model with a hidden state size of 2048 (4.3
billion parameters for a full sized input map).

Results. Fig 4.5 show the results for a held-out subject in the study using OTT-RNN
on a single representative 2D slice, with their predicted third timepoint image. While
higher levels of compression (lower OTT ranks) lead to “blocky” reconstructions, our
model is still able to identify boundaries of edges between low and high probabililty
voxels.

Cognition from gray matter sequence

Based on the results from the above experiment, one may ask if, in fact, a good model
of progression is being learned, or if only the “average” of all participants is being
predicted by the model.
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Timepoint 1 Timepoint 2 Timepoint 3 Predicted T3

Figure 4.5: Ground truth progression and prediction of gray matter probabilities in
an individual from our validation set. From the left, the first three images are the
ground truth images at visits 1, 2, and 3, followed by our prediction at visit 3.

(A) Predicting Cognition from 3D image sequences. To answer this question,
we can directly try to predict summary cognition measures which are used in practice.
Diagnoses themselves can often be based on partial information available to medical
experts at that time. Indeed, a small number of individuals in the ADNI cohort have
been diagnosed with AD or mild cognitive impairment and have regressed to a cogni-
tively healthy diagnosis at their next visit. In these situations, categorical diagnoses
can be seen as a noisy summary measure of decline. We predict a real-valued measure
collected at each timepoint. As in the previous chapter, The Rey Auditory Verbal
Learning Test (RAVLT) evaluates a large variety of cognitive functions, including
short and long term memory, cognitive function, and learning ability (Schmidt et al.,
1996), and has been identified as a strong indicator for developing AD pathology. We
train both TT and OTT models with dropout for 200 epochs.

Results. Figure 4.6 (left) shows the results of this analysis. Here, the advantage
of the OTT construction is clear, we are able to converge significantly faster compared
to the TT construction, with half as many parameters.

(B) Quantifying Model Uncertainty. Broad application of deep learning models
in neuroimaging remains limited, namely due to sensitivity of black box models to
mild perturbations in input data or model parameters, leading to unreliable predic-
tions. MC Dropout (Gal and Ghahramani, 2016), approximates model (epistemic)
uncertainty by using dropout at prediction time. Simulating an ensemble of networks
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Figure 4.6: Validation losses for reconstruction (left) and confidence interval widths
(right) for uncertainty estimation of RAVLT prediction (lower is better).

with different structures can yield direct estimates of uncertainty. Obtaining good
measures of this uncertainty requires sampling all parameters a significant number
of times: large networks may require many samples before a reasonable uncertainty
estimate. Using tensor train constructions allows us to feasibly compute an estimate
of uncertainty over all outputs, and with OTT we can further reduce this required
sampling rate.

Results. Figure 4.6 (right) shows 95% interval widths computed over 100 MC
Dropout instantiations, averaged over individuals in the validation set. The advantage
of our compressed orthogonal construction is clear, resulting in tighter confidence
intervals compared to the standard TT decomposition.

4.5 Conclusion
Taking advantage of the structure inherent in tensor train decompositions, we propose
and analyze the Orthogonal Tensor Train Decomposition, yielding direct benefits
in both parameter efficiency and computation time. This is an important step in
instantiating recurrent or sequential models for a set of longitudinal 3D brain images,
either in the context of generating new images in the sequence or for classification.
Using a mapping from Euclidean space, we construct a neural network variable that
can efficiently be learned through existing deep learning optimization frameworks.
Our results yield promising developments in applying deep learning methods for
analyzing sequential 3D medical imaging data, and we show that our method can
perform favorably in reconstruction and prediction tasks with such image volumes.
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While a focus here was brain imaging, we anticipate numerous applications in other
medical imaging settings. Code is available at https://github.com/ronakrm/OTT.

https://github.com/ronakrm/OTT
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Chapter 5

Efficient Learning and Unlearning via
Large-Scale Conditional Independence
Testing

While selecting a more efficient model a priori can be helpful when we can plan
ahead of training, it may sometimes be the case that a task may require selection
after a model has been trained. In this chapter we will address this post-hoc selection
task from a model parameter point of view, contrasting our approach from Chapter 4
where we inform a reduced-parameter model architecture before training. Here we are
motivated by the need for an efficient way of “scrubbing” existing models, to address
requests for sample deletion. Unlearning in this context has only been analyzed under
the assumption that model updates can be made over the entire model, but the forms
of provable updates have limited practical deployments for feasibility as we will see.
Using conditional independence ideas we will identify a parameter subset sufficient
for efficient unlearning. Work in this chapter was first published in the conference on
Computer Vision and Pattern Recognition (Mehta et al., 2022).

5.1 Introduction
As personal data becomes a valuable commodity, legislative efforts have begun to
push back on its widespread collection and use, particularly for training ML models.
Recently, a focus has been the “right to be forgotten" (RTBF), i.e., the right of an indi-
vidual’s data to be deleted from a database, and derived products. Despite existing
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legal frameworks on fair use, industry scraping has led to personal images being used
without consent, e.g. Harvey (2021), and even explicit personal information being
exposed at inference time in language models (Carlini et al., 2021). While regulation
(GDPR, CCPA) has not specified the extent to which data must be forgotten, it poses
a clear question: is deletion of the data enough, or does a model trained on that data
also needs to be updated?

Work originally presented in Carlini et al. (2019) and Carlini et al. (2020) has iden-
tified scenarios where trained models are vulnerable to attacks that can reconstruct
input training data. More directly, recent rulings by the Federal Trade Commission
FTC (2021); Kaye (2022) have ordered companies to fully delete and destroy not
only data, but also any model trained using those data. Public outcry of automatic
data collection and use in model training has increased significantly with new results
demonstrating the memorization of language models, insofar as providing the full
physical address given the proper prompt Carlini et al. (2021). While deletion and
(subsequent) full model retraining without the deleted samples is possible, most
in-production models require weeks of training and review, with extensive computa-
tional/human resource cost. With additional deletions, it is infeasible to retrain each
time a new delete request comes in.1 So, how can we update a model ensuring the
data is deleted without retraining?

Task. Given a set of input data S : {zi}n
i=1 ∼ D of size n, training simply identifies

a hypothesis ŵ ∈ W via an iterative scheme wt+1 = wt − g(ŵ, z′) until convergence,
where g(·, z′) is a stochastic gradient of a fixed loss function. Once a model at con-
vergence is found, machine unlearning aims to identify an update to ŵ through an
analogous one-shot unlearning update:

w′ = ŵ + gŵ (z′) , (5.1)

for a given sample z′ ∈ S that is to be unlearned.

Contributions. We address several computational issues with existing approximate
formulations for unlearning by taking advantage of a new statistical scheme for

1Recent large models require upwards of hundreds of thousands to millions of dollars. Prelim-
inary training of Stable Diffusion cost approximately $600,000 (https://twitter.com/emostaque/
status/1563870674111832066), and estimates for training GPT-3 range within the millions (https:
//lambdalabs.com/blog/demystifying-gpt-3).)

https://twitter.com/emostaque/status/1563870674111832066
https://twitter.com/emostaque/status/1563870674111832066
https://lambdalabs.com/blog/demystifying-gpt-3
https://lambdalabs.com/blog/demystifying-gpt-3
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Figure 5.1: Large deep learning networks typically associate specific subsets of
network parameters, blocks (blue), to specific samples in the input space. Traditional
forward or backward passes may not reveal these blocks: high correlations among
features may not distinguish important ones. Input perturbations can be used to
identify them in a probabilistic, distribution-free manner.

sufficient parameter selection. First, in order to ensure that a sample’s impact on the
model predictions is minimized, we propose a measure for computing conditional
independence, L-CODEC, which identifies the Markov Blanket of parameters to be
updated. Second, we show that the L-CODEC identified Markov Blanket enables
unlearning in previously infeasible deep models, scaling to networks with hundreds
of millions of parameters. Finally, we demonstrate the ability of L-CODEC to unlearn
samples and entire classes on networks, from CNNs and ResNets to transformers,
including models for face recognition and person re-identification.

5.2 Problem Setup for Unlearning
Let A be an algorithm that takes as input a training set S and outputs a hypothesis
w ∈ W , defined by a set of d parameters Θ. An unlearning scheme U takes as input a
sample z′ ∈ S used as input toA, and ideally, outputs an updated hypothesis w′ ∈ W
where z′ has been deleted from the model. An unlearning algorithm should output a
hypothesis that is close or equivalent to one that would have been learned had the
input to A been S \ z′. A framework for this goal was given by Ginart et al. (2019) as,

Definition 5.1 ((ϵ, δ)− forgetting). For all sets S of size n, with a “delete request” z′ ∈ S ,
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ε− ε′ > 0
H−1Full(g)

H−1P1 (gP1)

H−1P2 (gP2)

H−1P3 (gP3)

Figure 5.2: Network blocks can be unlearned together in an efficient block-coordinate
style update (blue lines), approximating an update to the full network which requires
a costly, and sometimes infeasible due to memory constraints, full Hessian inverse
(red line).

an unlearning algorithm U is (ϵ, δ)−forgetting if

P(U(A(S), z′) ∈ W) ≤ eϵP(A(S \ z′) ∈ W) + δ (5.2)

In essence, for an existing model w, a good unlearning algorithm for request z′ ∈ S
will output a model ŵ close to the output ofA(S \z′) (retraining without that sample)
with high probability.

Remark 5.2. Definition 5.1 is similar to the standard definitions of differential privacy. The
connection to unlearning is: if an algorithm is (ϵ, δ)−forgetting for unlearning, then it is also
differentially private.

If A is an empirical risk minimizer (ERM) for the loss f , let

A : (S, f)→ ŵ, (5.3)

ŵ = arg min F (w) and F (w) = 1
n

∑n
i=1 f(w, zi). Recall g(z′) from (5.1): our unlearning

task essentially involves identifying the form of g(z′) for which the update in (5.1)
is (ϵ, δ)-forgetting. If an oracle provides this information, we have accomplished the
unlearning task.
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The difficulty, as expected, tends to depend on f andA. Recent unlearning results
have identified forms of f and A where such a g(z′) exists. The authors in Sekhari
et al. (2021) define g(z′) = 1

n−1H ′−1∇f(ŵ, z′), where

H ′ = 1
n− 1

(
n∇2F (ŵ)−∇2f(ŵ, z′)

)
, (5.4)

with additive Gaussian noise w′ = w′ +N(0, σ2) scaling as a function of n, ϵ, δ, and the
Lipschitz and (strong) convexity parameters of the loss f . We can interpret the update
using (5.4) from the optimization perspective as a trajectory “reversal”: starting at
a random initialization, the first order (stochastic gradient) trajectory of w with z′ is
reversed using residual second order curvature (Hessian) information at the optimal
ŵ in (5.4), achieving unlearning. This is shown to satisfy Definition 5.1, and only
incurs an additive error that scales by O(

√
d/n2) in the gap between F (w′) and the

global minimizer F (w∗) over the ERM F (ŵ).

Rationale for approximate schemes. The aforementioned update requires storing,
computing, and inverting the O(d2) Hessian matrix. For a practitioner interested in
unlearning, this can only be directly instantiated if one has extensive computational
resources. In settings where it is not directly possible to compute the Hessian inverse
necessary for H ′−1∇f(ŵ, z′), we must consider alternatives.

A potential idea. Our goal is to identify a form of g(z′) that approximates the
Hessian-scaled gradient H ′−1∇f(ŵ, z′). Let us consider the Newton-style update
suggested by (5.4) as a smoothing of a traditional first order gradient step. The
inverse Hessian is a weighting matrix, appropriately scaling the gradients based
on the second order difference between the training set mean point F (ŵ) and the
sample of interest f(ŵ, z′). This smoothing can also be viewed from an information
perspective: the Hessian in this case corresponds to a Fisher-style information matrix,
and its inverse as a conditional covariance matrix (Golatkar et al., 2021, 2020b). It
could be possible that, if there are a specific set of parameters that have small gradients
at f(ŵ, z′), or if the information matrix is zero or small, then we need not consider
their effect.

Examples of this intuition in vision. Bau et al. (2017a); Fong and Vedaldi (2018);
Sun et al. (2019) and others have shown that models trained on complex tasks tend
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to delegate subnetworks to specific regions of the input space. That is, parameters
and functions within networks tend to (or can be encouraged to) act in blocks. For
example, activation maps for different filters in a trained (converged) CNN model
show differences for different classes, especially for filters closer to the output layer.
We formalize this observation as an assumption for samples in the training set.

Assumption 5.3. For all subsets of training samples S ⊂ S, there exists a subset of trained
model parameters P ∗ ⊂ Θ such that

f(S) ⊥w∗
Θ\P | w∗

P (5.5)

Due to the computational issues discussed above, if we could make such a sim-
ple/principled selection scheme practical, it may offer significant benefits.

To contextualize our contributions, we briefly review existing proposals for ma-
chine unlearning.
Naïve, Exact Unlearning. A number of authors have proposed methods for exact
unlearning, in the case where (ϵ = 0, δ = 0). SVMs by Romero et al. (2007) and Kara-
suyama and Takeuchi (2009), Naïve Bayes Classifiers by Cao and Yang (2015), and
k-means methods by Ginart et al. (2019) have all been studied. But these algorithms
do not translate to stochastic models with millions of parameters.
Approximate Unlearning. With links to fields such as robustness and privacy, we see
more developments in approximate unlearning under Definition 5.1. The so-called
ϵ-certified removal by Guo et al. (2020) puts forth similar procedures when δ = 0, and
the model has been trained in a specific manner. Guo et al. (2020); Izzo et al. (2021)
provide updates to linear models and the last layers of networks, and Golatkar et al.
(2020b) andGolatkar et al. (2020a) provide updates based on linearizations that work
over the full network, and follow-up work by Golatkar et al. (2021) presents a scheme
to unlearn under an assumption that some samples will not need to be removed.

Other work has taken alternative views of unlearning, which do not require or
operate under probabilistic frameworks (Bourtoule et al., 2021; Neel et al., 2021).
These schemes present good guarantees in the absolute privacy setting, but they
require more changes to pipelines (sharding and/or aggregating weaker models)
and scale unsatisfactorily in large deep learning settings.
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5.3 Randomized Markovian Block Coordinate
Unlearning

If there exist entries of the vector g(z′) = H ′−1∇f(ŵ, z′) that we can, through some pro-
cedure, identify as zero, then we can simply avoid computing such zero coordinates.
Not only can we zero out those particular entries in the inverse and the gradient, but
we can take advantage of the blockwise inverse to completely remove those parameters
from all computations. If possible, it would immediately change the complexity from
O(d3) to O(p3), where p≪ d is the size of the subset of parameters that we know are
sufficient to update.

Let P ⊆ Θ := {1, . . . , d} be the index set of the parameters that are “sufficient” to
update. A direct procedure may be to identify this subset P with

P = arg min
P ∈P(Θ)

||w̃ − w̃P ||, (5.6)

whereP(Θ) is the power set of the elements in Θ and w̃P is the subset of the parameters
we are interested in updating. Note that a simple solution to this problem does exist:
choosing the p = |P | parameters with the largest change will minimize this distance
for typical norms. This can be achieved by thresholding the updates g(z′) for ŵ.
However, this requires computing the full update for g(z′). We want a preprocessing
procedure that performs the selection before computation of g(z′) is needed.
A probabilistic angle for selection. We interpret a deep networkW as a functional
on the input space D. This perspective is common in statistics for variable selection
(e.g., LASSO), albeit used after the entire optimization procedure is performed i.e.,
at the optimal solution. The only difference here is that we use it at approximately
optimal solutions as given by ERM minimization. Importantly, this view allows us to
identify regions inW that contain the most information about a query sample z′. We
will formalize this intuition using recent results for conditional independence (CI)
testing. Finding wP above should also satisfy

z′ ⊥ wΘ\P | wP (5.7)

This CI formulation is well studied within graphical models. Many measures and
hypothesis tests have been proposed to evaluate it. The coefficient of conditional depen-
dence (CODEC) in Azadkia and Chatterjee (2019), along with their algorithm for
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“feature ordering”, FOCI, at first seems to offer a solution to (5.7), and in fact, can be
implemented “as is” for shallow networks.

Using CODEC directly for Deep Unlearning is inefficient. There are two issues:
First, when applying CODEC to problems with a very large n with discrete values,
the cost of tie-breaking for computing nearest neighbors can become prohibitive (see
Appendix B.3 for algorithmic details). Second, z′ is not a random variable for which
we have a number of instances. We defer discussion of the second issue to Section 5.4,
and address the first issue here.

Consider the case where a large number of elements have an equal value. With an
efficient implementation using kd−trees, identifying the nearest-neighbor as required
by CODEC would still require expanding the nodes of all elements with equal value.
As an example, if we are looking for the nearest neighbor to a point at the origin and
there are a large number of elements on the surface of a sphere centered at the origin,
we still require checking all entries and expanding their nodes in the tree, even when
we know that they are all equal for this purpose.

Interestingly, this problem has a relatively elegant solution. We introduce a ran-
domized version of CODEC, L-CODEC. For variables A, B, C:

TL := T
(
Ã, B̃|C̃

)
, (5.8)

where Ã = A + N(0, σ2), and similarly for B̃, C̃. This additive noise can simply be
scaled to the inverse of the largest distance between any points in the set. By requiring
this noise to be smaller than any distance between items in the set, the ranking will
remain the same between unique discrete values, and will be perturbed slightly
for equal ones. In expectation, this will still lead to the true dependence measure.
The noise addition is consistent with the Randomization criterion for conditional
independence – for A, B, C in Borel spaces, A ⊥ B | C iff A = h(B, U) almost surely,
for some measurable function h and uniform random variable U ∼ Uniform(0, 1)
independent of (B, C) as in Orbanz (2016).

Remark 5.4. An altered version of this setup also gives us a form of explainability, where
we can apply sensitivity analysis to each input feature or pixel and estimate its effect on the
output via a similarly randomized version of the Chatterjee rank coefficient T (A, B), proposed
by Chatterjee (2020).
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Figure 5.3: A sample is perturbed and passed through the network. Activations are
aggregated alongside losses and fed to L-FOCI. Selected rows represent slices of the
corresponding layer that are sufficient for unlearning.

Efficient Subset Selection that is also Sufficient for Predictive
Purposes

The above test is good for (5.7) if we know which subset P ∈ P(Θ) to test. Recent
work by Yang et al. (2020) proposes a selection procedure using an iterative scheme
to slowly build the sufficient set, adding elements which maximally increase the
information explained in the outcome of interest. While it is efficient (polynomial in
size), we must know the maximal degree. A priori, we may have no knowledge of
what this size is, and for parameter subsets it may be very high.

When using L-CODEC, we can use a more straightforward Markov Blanket identi-
fication procedure adapted from Azadkia and Chatterjee (2019). FOCI more directly
selects which variables are valuable for explaining z′, and in fact, is proven to identify
the sufficient set (Markov Blanket) with a reasonable number of samples. Briefly, in
our L-FOCI, the sufficient set is built incrementally with successive calls to L-CODEC,
moving the most “dependent” feature from the independent set to the sufficient set.
See Appendix B.3 for details.

Summary. This procedure alleviates the first issue in terms of sufficient subset or
Markov Blanket selection; compared to existing methods using information-theoretic
measures that require permutation testing, L-FOCI directly estimates the change in
variance when considering a proposal to add to the set. Now, we discuss how this
selection can help identify sets of parameters that can be updated.
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5.4 Deep Unlearning via L-FOCI Hessians
Our input samples to scrub z′ are not random variables for which we have samples
or distributional assumptions, nor are our parameters. In this case, a perturbation-
based scheme may be useful when attempting to generate samples for unknown
distributions.

Considering Assumption 5.3, when only some parameters are useful for the final
outcome on an input sample z′ ∈ S, the effect of those parameters can be measured
through activations due to the forward pass of a model. We estimate the conditional
independence test in (5.5) through activations as

f(z′) ⊥a∗
Θ\P | a∗

P , (5.9)

where aP for some parameter subset P ⊆ Θ is defined as the linear activations
generated by the forward pass through the model. This formulation relates to a
generalized version of the solution in Section 3 of Yang et al. (2020), where conditional
mutual information is estimated via feature mappings.

As an example, if a network has linear layers L, a simple linear layer l ∈ Lwith
parameters wl ∈ Rbin×bout would have activations al ∈ Rbout , with al = wlal−1. For
each entry al,k in the vector al, the associated parameters in the layer are wl[:, k] for
k ∈ [b]. Thus, we break up the network into influential slices. These slices can be seen
as a finer view of the parameter space compared to typical layerwise selection, but
coarser than a fully discrete one. Next, L now refers to the collection of these slices,
with a specific slice as l.

The tuple of variables we need samples from is now

{L(z′), a1, . . . a|L|} (5.10)

We can obtain samples from this set by perturbing the input and consecutively col-
lecting activations along all weight slices during the computation of the loss. For a
particular perturbation ξj ∼ N(0, σ2),

xj
i = xi + ξj; lj, aj

L = {l(xj
i ), aj

1, . . . aj
|L|} (5.11)
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The tuples (lj, aj
L) serve as samples for our conditional independence test,

(P ⊆ Θ) = L-FOCI((lj, aj
L)m

j=1) (5.12)

for m perturbations (see Figure 5.3). This extends naturally to convolution layers,
where “slices” correspond to each filter in the layer.

In Algorithm 4, the activations are collected using hooks within the forward pass.
First, gradients at the last and penultimate epoch for full training are stored during
the original training pass. Given a sample to unlearn, we compute L-FOCI over the
perturbed activations and losses generated by the forward pass, and identify which
parameter sets will be updated. We compute the approximate Hessian over only
these parameters via finite differences for both the full model and for the model only
over the sample of interest. Finally, we apply the blockwise Newton update to the
subset of parameters as in (5.1) with appropriate noise as in Sekhari et al. (2021).

Algorithm 4: Unlearning via Conditional Dependence Block Selection
Data: A trained model ŵ, gradient vectors ∇1F (ŵ),∇2F (ŵ), sample z′ ∈ S to

unlearn.
Result: model w′ with z′ removed.
1. for j ∈ {1, . . . , m} perturbations do

ξj ∼ N(0, σ2)
z′,j = z′ + ξj

lj, aj = f(z′,j)
end
2. Compute P∗ = L-FOCI(lJ , aJ).
3. Compute∇2

P F (ŵ, z′) via finite differences.
4. Update:

H ′
P = 1

n− 1
(
n∇2

P F (ŵ)−∇2
P f(ŵ, z′)

)
(5.13)

w′
P = ŵP + 1

n− 1H ′−1
P ∇f(ŵ, z′)P (5.14)

w′
Θ\P = ŵΘ\P (5.15)

Computational Gains. A direct observation is that now with this sampling, we
add a linear computational load. However, directly updating all parameters requires
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O(d3) computation due to matrix inversion, while this procedure requires O(md +
dm log m + p3), for the forward passes, FOCI algorithm, and subsequent subsetted
matrix inversion. For any reasonable setting, we have p≪ d, and so this clearly offers
significant practical advantages.

Theoretical Analysis

By definition, any neural network as described above is actually a Markov Chain:
we know that the output of a layer is conditionally independent of the penultimate
one given the previous one, and clearly a change in one layer will propagate forward
through the rest of the network. However, when trained for a task with a large
number of samples, the influence or “memory” of the network with respect to a
specific sample may not be clear. While the output of the layers may follow a Markov
Chain, the parameters in the layers themselves do not, and their influence on a sample
through the forward pass may be highly dependent or correlated. Practically, we
would hope that unlearning samples at convergence does not cause too much damage
to the model’s performance on the rest of the input samples. Following traditional
unlearning analysis, we can bound the residual gradient norm to relieve this tension.

Lemma 5.5. The gap between the gradient residual norm of the FOCI Unlearning update in
Algorithm 4 and a full unlearning update via (5.4),

||∇F (w−
F oci, D′)||2 − ||∇F (w−

F ull, D′)||2 (5.16)

shrinks as O(1/n2), with n the number of training samples.

Proof. The full proof is in Appendix B.1. Main idea: Because we only update a
subset of parameters, the gradients for the remainder should not change too much.
Any change to a selected layer only propagates to other layers by 1/n, and a Taylor
expansion about the new activation for that layer gives the result.

How does L-CODEC achieve acceleration for Unlearning? Sampling with weights
proportional to the Lipschitz constant of individual filters and layers is an established
approach in optimization, see Gorbunov et al. (2020). We argue that L-CODEC com-
putes an approximation to optimal sampling probabilities. Under a mild assumption
that the sampling probabilities have full support, it turns out that correctness of our
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approximate selection procedure can be guaranteed for unlearning purposes by using
recently developed optimization tools (Gower et al., 2019). By adapting results from
Gorbunov et al. (2020), we can show the following, summarizing the main result of
our slice-based unlearning procedure.

Theorem 5.6. Assume that layer-wise sampling probabilities are nonzero. Given unlearning
parameters ϵ, δ, the unlearning procedure in Alg 4 is (ϵ′, δ′)−forgetting where ϵ′ > ϵ, δ′ >

δ represent an arbitrary precision (hyperparameter) required for unlearning. Moreover,
iteratively applying our algorithm converges exponentially fast (in expectation) w.r.t. the
precision gap, that is, takes (at most) O(log 1

gϵ
log 1

gδ
) iterations to output such a solution

where gϵ = ϵ′ − ϵ > 0 and gδ = δ′ − δ > 0 are gap parameters.

Our result differs from Nesterov’s acceleration: we do not use previous iterates in a
momentum or ODE-like fashion; rather, here we are closer to primal-dual algorithms
where knowing nonzero coordinates at the dual optimal solution can be used to
accelerate primal convergence, see Diakonikolas and Orecchia (2019). Moreover,
since our approach is randomized, the dynamics can be better modeled using the SDE
framework for unlearning purposes, as in Simsekli et al. (2020). Here, we do not
compute anything extra, although it is feasible for future extensions.

Remark 5.7. Our approach to estimate the Lipschitz constant is different from Fazlyab et al.
(2019) where an SDP must be solved – quite infeasible for unlearning applications. Our
approach can be interpreted as solving a simplified form of the SDP proposed there, when
appropriate regularity conditions on the feasible set of the SDP are satisfied.

A note on convexity. Existing methods for guaranteeing removal and performance
depend on models being convex. Practical deep learning applications however involve
highly nonconvex functions. The intuitions of unlearning for convex problems directly
apply to nonconvex unlearning with one more technical assumption: minimizers
of the learning problem satisfy Second Order Sufficiency (SOS) conditions. SOS
guarantees that ∇2F̂ (ŵ) and Ĥ are positive semi-definite, and that the parameter
update in (5.4) is an ascent direction w.r.t. the loss function on U , making unlearning
possible. Guarantees for nonconvex unlearning involve explicitly characterizing a
subset of SOS points (so-called “basins of attraction” of population loss), i.e., which
points gradient descent can converge to, see Section 1.3 in Traonmilin and Aujol (2020).
So, will minimizers from first order methods satisfy SOS conditions? Generally, this
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is not true, e.g., when the Hessian is indefinite, Ĥ ̸⪰ 0, the update itself may not be
an ascent direction w.r.t. negative of the loss. Here, standard Hessian modification
schemes are applicable Wright et al. (1999), leading to subsequent application of
Newton’s step in Sekhari et al. (2021) with a diagonally modified Hessian.

We fix weight decay during training, acting as ℓ2 regularization and giving us an
approximate λ-strong convexity. We also take advantage of this property to smooth
our Hessian prior to inversion, intuitively extending the natural linearization about a
strongly-convex function. Interestingly, this exactly matches a key conclusion from
Basu et al. (2021): weight-decay heavily affects the quality of the measured influence,
consistent with our nonconvexity discussion.

Implementation Details. As we only need a subset of the Hessian, we compute the
finite difference among the parameters within the blocks selected. For large models,
even subsets of model parameters may lead to large Hessian computations, so we
move parameters as needed to the CPU for parameter updates. Pairwise distance
computations for CI testing via nearest neighbor are carried out on the GPU (Zeng
et al., 2021). Our code, achieves reasonable run-time for unlearning for deep models,
e.g., one unlearning step for a person re-identification task on a ResNet50 model with
roughly 24M parameters takes about 3 minutes.

5.5 L-FOCI in Generic ML Settings
We begin with understanding the value of L-CODEC and L-FOCI for Markov Blanket
Identification and progress to applications in typical unlearning tasks involving large
neural networks previously infeasible with existing scrubbing tools. See Appendix B
for additional details.

L-CODEC Evaluation. To assess speedup gained in the discrete setting when run-
ning L-CODEC, we construct the Markov Blanket for specific attributes provided as
side information with the CelebA dataset. Figure 5.4 shows the wall-clock times for
Markov Blanket Selection via FOCI and L-FOCI for each attribute.

Markov Blanket Identification. We replicate the experimental setup in Section 5.3
of Yang et al. (2020), where a high dimensional distribution over a ground truth
graph is generated, and feature mappings are used to reduce the dimension and map



100

Figure 5.4: L-CODEC vs CODEC run time comparison for identifying sufficient
subsets for each CelebA attribute separately (pairs of columns, more details in ap-
pendix B.2).

Raw Data Feature Maps
Method TPR FPR Time (s) TPR FPR Time (s)
Yang et al. (2020) 0.75 0.50 5124.22 0.875 0.00 516.19
L-CODEC + CIT 1.00 0.50 402.10 0.75 0.00 117.29
L-CODEC + L-FOCI N/A 0.833 0.50 0.464

Table 5.1: 3D-Bullseye Markov Blanket identification. CIT represents the model in
Yang et al. (2020). Both L-CODEC and L-FOCI run much faster than recent Markov
Blanket identification schemes. L-FOCI is not applicable to the multi-dimensional
raw data setting.

to a latent space. Table 5.1 summarizes subset identification efficacy and runtime.
Replacing conditional mutual information (CMI) with L-CODEC, we see a clear
improvement in both runtime and Markov Blanket identification over the raw data,
and comparable results in the latent feature space. Using L-FOCI directly in the
feature space, we identify an additional spurious feature not part of the Markov
Blanket, but runtime is significantly faster.
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Figure 5.5: Validation accuracies after training to predict “No Beard" in the CelebA
dataset. (L to R) regularization for all features, for a random subset, and via FOCI.
Green indicates accuracy on the data with that feature, red, without.

Spurious Feature Regularization. This Markov Blanket (MB) identification scheme
can be used to address spurious feature effects on traditional NN models. A straight-
forward approach would be to directly add a loss term for each potentially important
feature over which we would like to regularize, L(θ) +∑

S∈S RS(θ). However, with
a large number of outside factors S, this can adversely effect training. We instead
use L-FOCI to identify the set of minimal factors that, when conditioned, make the
rest conditionally independent. Then it is only necessary to include regularizers over
S ∈MB(Y ).

We evaluate a simple attribute image classification setting using the CelebA dataset.
We run L-FOCI over the attributes as in our L-CODEC evaluation, and regularize
using a Gradient Reversal Layer for a simple accuracy term over those attributes.
Results in Figure 5.5 clearly show that selection with FOCI provides the best result,
maintaining high overall accuracy but also preserving high accuracy on sets of samples
with/without correlated attributes.
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Figure 5.6: (Top) Residual Accuracies & Sample Gradient Norm of removal for an
MNIST Logistic Regressor. Averaged over 10 runs. (Bottom) Residual accuracies and
sample gradient norms for various CIFAR-10 models.

5.6 L-FOCI for Machine Unlearning

Comparing to Full Hessian Computation

For simple regressors, we can compute the full Hessian and compare results generated
by a traditional unlearning update, our L-FOCI update, and a random selection
update. To reduce variance and show the best possible random selection, we run
our L-FOCI and randomly choose a set of the same size for each random selection.
Figure 5.6 (top) shows validation and residual accuracies for 1000 random removals
from MNIST (averaged over 10 runs).

Are we selecting reasonable subsets? A natural question is whether the subset
selection via L-FOCI is any better than random, given that we are effectively taking a
smaller global step. We answer this in the affirmative with a simple comparison with
a random selection of size equal to the set selected by L-FOCI. Figure 5.6 (top) shows
that the sample gradient norm for selections made by L-FOCI are larger than those of
a random selection: the subset of the model scrubbed of this specific sample has a
larger impact on its final loss, and thus the gradient norm post-removal is large.
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Figure 5.7: MNIST Retraining comparison averaged over 8 runs. Validation accuracies
and residual gradient norms.

Does the formulation scale? We scrub random samples from various CIFAR-10
models, and evaluate performance for the same set of hyperparameters. When the
models are larger than logistic regression, it is infeasible to estimate the full Hessians,
so we must use our L-FOCI selection update. Figure 5.6 (bottom) shows removal
performance over many typical models with varying sizes. Models that have higher
base accuracies tend to support more removals before performance drops. This
matches results for differentially private models: models that generalize well may
not have overfit and thus may already be private, allowing “fast” forgetting.

Tradeoff vs Retraining. While our focus is the setting in which retraining is not
feasible, where we can retrain we compare validation accuracies as a function of
number of removals. Using a subset of MNIST, we train to convergence and iteratively
remove samples using our construction, retraining fully at each step for comparison.
With 1000 training samples from each class and reasonable settings of privacy param-
eters (ϵ = 0.1, δ = 0.01), we support a large percentage of removals until validation
accuracy drops more than a few percent, see Figure 5.7.

Removal in NLP models

We now scrub samples from transformer based models using LEDGAR (Tuggener
et al., 2020), a multilabel corpus of legal provisions in contracts. We use the proto-
typical subset which contains 110156 provisions pertaining to 13 most commonly
used labels based on frequency. Our model is a fine-tuned DistilBERT (Sanh et al.,
2019) and uses the [CLS] token as an input to the classification head. Table 5.2 shows
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# Supported Removals
ϵ Governing Laws Terminations
0.1 > 100 > 100
0.01 > 100 > 100
0.001 18 21
0.0005 6 7

Table 5.2: Scrubbing transformer model for provision classification.

results of scrubbing the provisions from two different classes; Governing Laws and
Terminations which have the highest/lowest support in the test set. As expected with
increasing ϵ, i.e., lower privacy guarantees, we can support more number of removals
based on the Micro F1 score of the overall model. The Micro F1 scores, for the removed
class fall off rapidly, while the change in overall scores is more gradual.

Removal from Pretrained Models

The above settings show settings where a sample from one specific source may be
removed. A more direct application of unlearning is completely removing samples
from a specific class; a compelling use case is face recognition.

We utilize the VGGFace dataset and model, pretrained from the original work in
Huang et al. (2008); Parkhi et al. (2015). The model uses a total of approximately
1 million images to predict the identity of 2622 celebrities in the dataset. Using a
reconstructed subset of 100 images from each person, we first fine-tune the model
on this subset for 5 epochs, and use the resultant models as estimates of the Hessian.
In this setting, the VGGFace model is very large, including a linear layer of size
25088× 4096. Selecting even a few slices from this layer results in a Hessian matrix
unable to fit in typical memory. For this reason, we run a “cheap” version of L-FOCI:
we select only one slice that results in the largest conditional dependence on the
output loss.

Figure 5.8 show results for scrubbing consecutive images from one individual in
the dataset for a strong privacy guarantee of ϵ = 10−5. As the number of samples
scrubbed increases, the performance on that class drops faster than on the residual
set, exactly as desired.
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Figure 5.8: Scrubbed and Residual Accuracies (every 10 removals) for ϵ = 1e−5. The
accuracy drop for the residual set is gradual up to a certain number of removals.

Removal from a Person re-identification model

As a natural extension to our experiments on face recognition, we evaluate unlearning
of deep neural networks trained for person re-identification. Here, the task is to
associate the images pertaining to a particular individual but collected in diverse
camera settings, both belonging to the same camera or from multiple cameras. In
our experiments, we use the Market-1501 dataset (Zheng et al., 2015) and a Resnet50
architecture which was trained for the task. We unlearn samples belonging to a par-
ticular person, one at a time, and check the performance of the model. Experimental
results are in agreement with results reported for the transformer model as well as
the VGGFace model. With very small values of ϵ i.e. 0.0005 the number of supported
removals is limited to less than 10 depending on the person id being removed. How-
ever, with a larger value of ϵ, e.g., 0.1, all potential samples can be removed without a
noticeable degradation in model performance in terms of mAP scores. In Figure 5.9,
we clearly see that after scrubbing a model for a particular person, its predictions
for that particular individual become meaningless whereas the predictions on other
classes are still possible with confidence, as desired. Additional experiments with
different datasets, model architectures and other ablations for deep unlearning for
person re-identification models are presented in Appendix B.2.

5.7 Conclusion
Our selection scheme identifies a subset of parameters to update and significantly re-
duces compute requirements for standard Hessian unlearning. For smaller networks
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Figure 5.9: Activation maps from a model scrubbed for the person on the left (right
set is not scrubbed). For each triplet, from (L to R) are the original image, the
activation map and its image overlay. Note the effect of scrubbing: activations change
significantly for the scrubbed sample (compare column 2 to 3) whereas remain stable
for the non-scrubbed sample (compare column 5 to 6).

with a large number of removals, retraining may be effective, but when full training
sets are not available or retraining is costly, unlearning in some form is needed. We
show the ability to approximately unlearn for large models prevalent in vision, a
capability that has not so far been demonstrated.
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Chapter 6

Generalizing the Earth Mover’s
Distance for Efficient Neural Network
Regularization

The unlearning procedures above work well when samples to be removed are known.
In cases of data privacy these samples are clear, defined by guidelines or direct user
requests. However in the case where individual samples are not explicitly identified,
we may still want a model to behave as if it is agnostic to individual samples, or
perform equally across different individuals or groups (subsets) of people. Building
a model beforehand that has been trained in a manner that automatically provides a
similar guarantee can alleviate some of the post-hoc computational stressors described
in the last chapter. Here, we will describe a fast method for both identifying samples
during training that are outliers in a particular sense, and directly selecting and
pushing model parameters towards reducing disparate model performance on those
samples. Work in this chapter appeared at the International Conference on Learning
Representations (Mehta et al., 2023).

6.1 Introduction
The use of Optimal transport (OT) is now prevalent in many problem settings includ-
ing information retrieval (Balikas et al., 2018; Yurochkin et al., 2019), image processing
(Bonneel et al., 2014), statistical machine learning, and more recently, for ethics and
fairness research (Kwegyir-Aggrey et al., 2021). OT is well-suited for tasks where
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dissimilarity between two or more probability distributions must be quantified; its
success was made possible through dramatic improvements in algorithms (Cuturi,
2013; Solomon et al., 2015) that allow one to efficiently optimize commonly used
functionals. In practice, OT is often used to estimate and minimize the distance
between certain (data-derived) distributions, using an appropriately defined loss
functional. When one seeks to operate on more than two distributions, however,
newer constructions are necessary to effectively estimate distances and transports.
To this end, a well studied idea in the literature is the “barycenter,” identified by
minimizing the pairwise distance between itself and all other distributions given
(analagous to the Karcher mean on Riemannian manifolds). The d-dimensional proxy
distance is then defined as the sum of the distances to the barycenter.

Computing barycenters. Assuming that a suitably regularized form of the optimal
transport loss is utilized, the pairwise distance calculation itself can be efficient – in
fact, in some cases, Sinkhorn iterations can be used (Cuturi, 2013). On the other hand,
to minimize distances to the mean, most algorithms typically operate by repeatedly
estimating the barycenter and those pairwise distances, and using a “coupling” strat-
egy to push points toward the barycenter, or in other cases, summing over all pairwise
distances. As the number of distributions grows, robustness issues can exacerbate
(Alvarez-Esteban et al., 2008; Le et al., 2021) and the procedure becomes expensive
(e.g., for 50 distributions, with 50 “bins”).

A potential alternative. Multi-marginal optimal transport (MMOT) is a related
problem to the aforementioned task but to some extent, the literature has developed
in parallel. In particular, MMOT focuses on identifying a joint distribution such that
the marginals are defined by the input distributions over which we wish to measure
the dissimilarity. The definition naturally extends the two-dimensional formulation,
and recent work has explored a number of applications (Pass, 2015). But the MMOT
computation can be quite difficult, and only very recently have practical algorithms
been identified (Lin et al., 2022). Additionally, even if a suitable method for computing
an analogous measure of distance were available, minimizing this distance to reduce
dissimilarity (push distributions closer to each other) is practically hard if standard
interior point solvers are needed just to compute the distance itself.
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Why and where is dissimilarity important? Enforcing distributions to be similar is
a generic goal whenever one wishes some outcome of interest to be agnostic about
particular groups within the input data. In applications where training deep neural
network models is needed, it is often a goal to enforce distribution similarity on model
outputs. For example, in Jiang et al. (2020), the authors define fairness measures
over the probability of the prediction, given ground truth labels. However, these
methods are rarely extended to continuous measures among internal neural network
activations, mainly due to the strong distributional assumptions needed (product of
Gaussians) and the added algorithmic complexity of estimating the barycenter. These
issues limit application of these ideas to only the final outputs of neural network
models, where the distribution is typically binomial or multinomial. MMOT solutions
might be employed here, but suffer similar computational limitations.

Contributions. (1) We identify a particular form of the discrete multi-marginal
optimal transport problem which admits an extremely fast and numerically robust
solution. Exploiting a recent extension of the classical Earth Movers Distance (EMD)
to a higher-dimensional Earth Mover’s objective, we show that such a construction
is equivalent to the discrete MMOT problem with Monge costs. (2) We show that
minimization of this global distributional measure leads to the harmonization of input
distributions very similar in spirit to the minimization of distributions to barycenters
(see Figure 6.1). (3) We prove theoretical properties of our scheme, and show that the
gradient can be read directly off from a primal/dual algorithm, alleviating the need
for computationally intense pairwise couplings needed for barycenter approaches.
(4) The direct availability of the gradient enables a specific neural network instantia-
tion, and with a particular scaffolding provided by differentiable histograms, we can
operate directly on network activations (anywhere in the network) to compute/mini-
mize the d-MMOT. We establish via experiments that computing gradients used in
backpropagation is fast, due to rapid access to solutions of the dual linear program.
We compare with barycenter-like approaches in several settings, including common
fairness applications.



110

Iteration 0 Iteration 100 Iteration 200 Iteration 500 Iteration 1000

Figure 6.1: Starting and ending state of minimizing a multi-marginal OT distance.
Each iteration minimizes the generalized Earth Mover’s objective, and then updates
each histogram in the direction provided by the gradient.

6.2 Existing Work on Optimal Transport and Related
Work

Despite originating with (Monge, 1781), optimal transport continues to be an ac-
tive area of research (Villani, 2009). The literature is vast, but we list a few key
developments.

Early applications. Starting in (Peleg et al., 1989), the idea of shifting “mass” around
within an image was used for comparing images to each other and applied to image
retrieval (Rubner et al., 2000), where the term “Earth Mover’s Distance” (EMD) was
introduced. EMD has since been widely used in computer vision: e.g., for image
warping (Zhang et al., 2011), in supervised settings (Wang and Guibas, 2012), match-
ing point sets (Cabello et al., 2008) and in scenarios involving histogram comparisons
(Ling and Okada, 2007; Wang and Guibas, 2012; Haker et al., 2004).

Modern machine learning. The continuous optimal transport problem (Monge-
Kantorovich problem), was originally presented in (Kantorovich, 1942; Kantorovitch,
1958). While the continuous problem has been studied intensively (Villani, 2021),
uses of optimal transport within machine learning were possible due to (Cuturi, 2013),
which showed that entropic regularization enables fast algorithms for EMD (two
distributions with discrete support), and contributed to the success of Wasserstein
distances in applications. Consequently, problems including autoencoders (Tolstikhin
et al., 2018), GANs (Arjovsky et al., 2017), domain adaptation (Courty et al., 2016),
word embeddings (Huang et al., 2016) and classification tasks (Frogner et al., 2015)
have benefited via the use of optimal transport.

Multi-marginal optimal transport. Extending optimal transport theory to an arbi-
trary number of distributions has been studied on the theoretical side (Pass, 2015),
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and practical extensions have been proposed (Lin et al., 2022). But implementations
that integrate directly into machine learning pipelines rely on either heuristics or
modifications that result in an approximation of the original MMOT problem (Cao
et al., 2019).

Wasserstein barycenters. One use case of our algorithms will be in formulations
that involve Wasserstein barycenters. Given a set of probability distributions, the
Wasserstein barycenter minimizes the mean of Wasserstein distances to each probability
distribution in the set: a practical definition of the mean under the transportation
distance (Luise et al., 2019; Cuturi and Doucet, 2014; Agueh and Carlier, 2011; Janati
et al., 2020). Applications of Wasserstein barycenter include texture analysis (Rabin
et al., 2011), sensor data fusion (Elvander et al., 2020), shape interpolation (Solomon
et al., 2015), coupling problems (Rüschendorf and Uckelmann, 2002) and others (Ho
et al., 2017). Very recently, polynomial time algorithms have been derived (Altschuler
and Boix-Adsera, 2021).

Fairness. Proposals such as (Jiang et al., 2020; Chzhen et al., 2020; Gordaliza et al.,
2019) have all regularized models towards outcomes which have equal predictive
power over subgroups within a population, measured using optimal transport dis-
tance. Informally, the idea is to operate on distributions that are supported on dis-
parate groups, and ask that the distributions get “pushed" towards a common central
distribution. This requires solving an optimal transport problem.

Greedy algorithms and extensions. Hoffman et al. (1963) observed that there exists
a family of linear-time greedy algorithms that solve the classical two-dimensional
transportation problem. Later, Bein et al. (1995) extended the relevant definitions
and the greedy algorithm to d-dimensional transportation problems. More recently,
the results in Kline (2019), which we will use here, further extended this result to the
dual program, and several theoretical properties of the generalized Earth Mover’s
problem were shown. A slightly different generalized d-dimensional Earth Mover’s
problem is explored in Erickson (2020), with a focus on statistical generalization
properties.
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6.3 Earth Mover’s Distance and Discrete Multimarginal
Optimal Transport

Given a pair of discrete probability distributions p1, p2 ∈ Rn
+, we may want to quantify

similarity or dissimilarity. Often we do this by selecting from many measures, includ-
ing the q-norm, KL-divergence or the Earth Mover’s Distance (EMD). The EMD for a
pair of distributions has several equivalent interpretations. First, let p1 be a source
of mass, and p2 be a sink for mass, and x(i, j), where x ∈ Rn×n, represent the flow of
mass from p1(i) to p2(j). Denote by c(i, j) the cost of moving one unit of mass from
p1(i) to p2(j). The EMD between p1 and p2 is the minimal cost to transform p1 into p2,
written as a linear program (LP):

min
x∈Rn×n

+

∑
i,j

c(i, j)x(i, j) s.t.
∑

j

x(i, j) = p1(i);
∑

i

x(i, j) = p2(j), (∀i, j ∈ [n]).

(6.1)

The source-sink interpretation is asymmetric in p1 and p2, but the LP is symmetric in p1

and p2. It can be shown that the objective value of this LP defines a metric (Kantorovich,
1960), and the optimal value of the objective function can be interpreted as a distance
between p1 and p2, and useful to quantify dissimilarity between pairs of distributions.
In particular, p1 = p2 if and only if the optimal objective value of the Earth Mover’s
problem vanishes. The LP in (6.1) has an equivalent dual LP,

max
z1,z2∈Rn

z⊤
1 p1 + z⊤

2 p2 s.t. z1(i) + z2(j) ≤ c(i, j), (∀i, j ∈ [n]). (6.2)

By strong duality, the optimal value of the primal program (6.1) equals the optimal
value of the dual program (6.2). Many practical relaxations have been proposed for
(6.1), including entropic regularization (Cuturi, 2013). Computation of the EMD is
readily available as in the Python Optimal Transport (POT) library (Flamary et al.,
2021).

Discrete Multi-Marginal Optimal Transport

The foregoing approach applies only to d = 2 distributions, namely p1 and p2. We
briefly review the extension to d > 2 distributions; the literature calls this multi-
marginal optimal transport (MMOT).
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Definition 6.1 (Discrete Multi-Marginal Optimal Transport (d-MMOT)). Let p1, . . . , pd ∈
Rn

+ be discrete probability distributions. Let Cd : Rnd → R+. The discrete multi-marginal
optimal transport problem (d-MMOT) can be written as

min
X∈Rn×···×n

Cd(X) s.t. Xi = pi, (∀i ∈ [d]),

where Xi ∈ Rn is the i-th marginal of X ∈ Rn×···×n = Rnd .

Following the original formulation (Kantorovich, 1942), we will restrict the cost
function Cd(·) to the linear map, Cd(X) := ⟨c, X⟩⊗, where c ∈ Rn×···×n

+ is nonnegative.
Here, the d-MMOT is the LP,

min
x∈Rnd

+

∑
i1,...,id

c(i1, . . . , id) x(i1, . . . , id) s.t.
∑

i2,...,id

x(i1, . . . , id) = p1(ii), (∀i1 ∈ [n])

...∑
i1,...,id−1

x(i1, . . . , id) = pd(id), (∀id ∈ [n]).

(6.3)

This linear program is central to the regularization schemes that are discussed below.

6.4 Efficient d-MMOT Computation
The linear d-MMOT problem (6.3) suffers from the curse of dimensionality: the
LP has nd variables, and even modest choices of n and d can result in a LP with
billions of variables, making standard LP solvers inapplicable. Alternatively, specific
algorithms have been proposed (Benamou et al., 2015), and relaxations via entropic
regularization have become more widespread, with very recent extensions to the
d-MMOT setting (Tupitsa et al., 2020; Lin et al., 2022).

In practice, the cost c in (6.3) typically takes one of two forms. In the case where
the distributions p1, . . . , pd are over categorical variables, the cost is typically defined
as c(i1, . . . , id) = 0 when i1 = · · · = id and 1 otherwise. However, and importantly, if
the distributions pi are histograms over some ordinal or discretized space, the cost
typically has a structure closer to that of a “tensorized” distance, characterized by the
Monge property.

Definition 6.2 (Monge Property). A tensor c is Monge if for all valid i1, . . . id and
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j1, . . . , jd,

c(s1, . . . , sd) + c(t1, . . . td) ≤ c(i1, . . . id) + c(j1, . . . , jd) (6.4)

where sk = min(ik, jk) and tk = max(ik, jk).

Our focus is on a specific cost, which is known to be Monge: c(i1, i2, . . . , id) :=
max {ik : k ∈ [d]} − min {ik : k ∈ [d]}. When d = 2, this cost reduces to c(i1, i2) =
|i1 − i2|, which agrees with the classical EMD cost. This choice of c is called the
generalized EMD cost.

Remark 6.3. Limiting our attention to this cost is not as restrictive as it may appear. Indeed,
Bein et al. (1995) shows that the optimal solution to the LP (6.3) is independent of the cost,
as long as it is Monge. Additionally, when c is the generalized EMD cost, Kline (2019)
describes a greedy algorithm that solves both (6.3) and its dual (6.5) in linear time. It is also
shown that the optimal objective value is a continuous nonnegative function of each probability
distribution pj (i.e., small changes in one distribution cause small changes in the objective
value). Continuity is critical for numerical stability. Next, when c is the generalized Earth
Mover’s array, the optimal objective value vanishes if and only if pi = pj for all i, j ∈ [n].

This separability property is useful in applications where we wish to iteratively
“step towards” the barycenter of a set of distributions, see Figure 6.2. In order to step
towards red arrows) a barycenter, we require a descent direction. We observe that
the following result gives us this functionality.

Theorem 6.4. The dual linear program of the d-MMOT problem (6.3) is

maximize
zj∈Rn,j∈[d]

∑
j

p′
jzj subject to z1(i1) + · · ·+ zd(id) ≤ c(i1, . . . , id), (6.5)

where the indices in the constraints include all ij ∈ [n], j ∈ [d]. Denote by ϕ(p1, . . . , pd),
the optimal objective value of the LP in (6.3). Let z∗ be an optimal solution to the dual
program (6.5). Then,

∇ϕ(p1, . . . , pd) = z∗, and for any t ∈ R, ϕ(p1, p2, . . . , pd) =
∑

j

p′
j(z∗

j + t η),

where η := (z∗
1(n) e, z∗

1(n) e, · · · , z∗
d(n) e).
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Proof. The main observation invokes perturbation analysis (Mangasarian and Meyer,
1979; Ferris and Mangasarian, 1991) of LPs to assert that, under mild uniqueness
conditions, small changes to a LP’s input data does not change its optimal solution.
The full proof is in Appendix C.1.

Remark 6.5. The first part of this result provides what we require: a direction of descent.
Thus, if we can solve the d-MMOT problem and also find the optimal solution to its dual,
then we can step (or move) our distributions in the opposite direction of the dual variables to
push them together, see Figure 6.2. The second claim is somewhat technical, and reconciles
particular affine shifts that result in equivalent objective values.

Optimization of d-MMOT

Setup. We can now instantiate d-MMOT as an add-on term in a standard machine
learning formulation. Concretely, it can be positioned alongside typical learning
losses L(f(x), y; θ) to encourage minimizing distances among d different distributions
gi ∈ G, i ∈ [d], d-MMOT(f(x), g; θ), i.e.,

min
θ

L(f(x), y; θ) + d-MMOT(f(x), g; θ). (6.6)

Within a deep neural network (DNN) architecture, as in some of our experiments,
several properties of the d-MMOT module are useful: our results above naturally
provide clean operations for computing both the required objective in the “forward”
pass and gradients in the “backward” pass.

Using the primal and dual variables. If the optimal objective value of (6.3) serves in
regularizing a deep neural network, then we can train the network as follows. During
the forward pass, i.e., computing the d-MMOT objective, we can employ a version of
the aforementioned primal/dual algorithm that solely computes the function ϕ and
stores the dual variables z. As backpropagation proceeds, when the EMD module
encounters an incoming gradient, it is simply multiplied by the stored dual variables
(see Theorem 6.4 and Algorithm 5). We call our procedure the d-dimensional Earth
Mover’s Distance, or in short, the DEMD algorithm.

Complexity. Computing the DEMD distance in the forward pass is exactly O(nd):
linear in the number of distributions and number of bins. This property follows
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Figure 6.2: (Left) Barycenter methods identify a center (red circle) and transport
all distributions (blue circles) toward that center along the coupling path (yellow).
(Right) Our DEMD approach identifies “support" distributions that lie on the convex
hull (outlined circles), and only those distributions are moved in a direction that
decreases the Generalized EMD objective.

Algorithm 5: d-Dimensional Earth Mover’s Distance (DEMD)
Function Forward(p1, . . . , pd):

Compute ∑ sktk and (z1, . . . , zd) via Kline (2019).
Save (z1, . . . , zd).
return ∑k sktk

Function Backward(gradOutput):
Load (z1, . . . , zd)
return (z1, . . . , zd) · gradOutput

directly from the algorithm, needing only a single pass through all of the data. Bein
et al. (1995) provides this result for greedy algorithms that solve OT programs as in
Definition 6.1. In contrast to methods that derive gradients via entropic regularization
schemes, i.e., relaxations of the optimal transport problem (Luise et al., 2018; Xie
et al., 2020; Cuturi et al., 2020), this approach solves the distance computation exactly
in linear time. This analysis is not only provided by the theory in prior work, but is
also explicit in the number of iterations defining our algorithm (see Appendix C.4
for more details). For minimizing the DEMD (computing the updates, i.e., red
arrows in Figure 6.2), a convergence analysis would follow from the properties of
the optimization scheme chosen. Our tool can be dropped in exactly as any other
module in modern learning applications (using the observation that gradients are
easily computed, i.e., O(1) time to read stored dual variables).

A few practical adjustments. It often happens during training that the optimal
solutions may, through updates by stepping in the direction of the gradient, acquire
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entries that are negative. This violates an assumption that entries must be nonnegative.
However, Theorem 2.2 in Kline (2019) shows that the optimal objective value, ϕ,
possesses a type of translation invariance. We leverage this result, alongside the
second part of our Theorem 6.4 to ensure that, in the event that a point escapes the
nonnegative orthant ofRn, an appropriately constructed constant vector may be added
to the current iterate so that it again lies in the nonnegative orthant, without changing
the objective value. Further, with a relatively small learning rate, by the continuity of
ϕ, normalization is a small perturbation of the original point and can be applied as
necessary to enforce that updates result in valid distributions.

Remark 6.6. Another useful property is that if the convex hull of (p1, . . . , pd) is contained in
the convex hull of (p̂1, . . . , p̂d̂), then ϕ(p1, . . . , pd) ≤ ϕ(p̂1, . . . , p̂d̂), with strict inequality if
containment is strict. A direct consequence of this property is that points within the interior of
the convex hull of the data fed to the optimization model have vanishing gradients. Practically,
this leads to sparse gradients w.r.t. the distributions, and nonzero gradients correspond to
points on the hull, i.e., distributions which are maximally different from the rest. Minimization
proceeds by iteratively moving mass such that these maximally different distributions are
pushed toward each other. Figure 6.2 shows the convex hull during minimization of the
generalized EMD objective via our DEMD algorithm.

Need for Histogramming. Note that outputs f(x) and intermediate activations are
continuous values (layer shape by batch size). So, we must transform activations into
normalized histograms (i.e., discrete distributions). While libraries such as PyTorch
and Tensorflow typically provide histogram functions, they are not differentiable. The
discontinuous operation of bin assignment does not allow for an end-to-end pipeline
where we can push upstream parameters in the direction of minimizing the EMD
objective over histograms. To address this, we use a simple relaxed/differentiable
histogramming operation. First, all outputs are mapped to [0, 1] using a Sigmoid
activation. Then, for each bin location, the “count” in that bin is determined by a
ReLU function applied to the difference between the gap between the activation and
the distance to the bin boundary. In other words, if an activation falls in a bin, the
count of that bin increases based on the distance to the bin boundary, otherwise the
count remains the same. The full procedure is detailed in Appendix C.2. The ReLU
activations defining bin boundaries allow for gradients to move samples towards
neighboring bins as needed.
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Figure 6.3: (Left) DEMD is positioned after the final layer, prior to the activation.
Activations are sorted into distributions utilizing group labels provided alongside the
input data. Computed distributions are then brought together using our algorithm.
(Right) Computation times for direct distance evaluation of EMD-like distances.
Existing methods take much more time (check y-axis) as the number of distributions
grow.

6.5 Numerical Evaluations and Fairness Experments
We evaluate our construction in a number of settings. First, we demonstrate the
computational speedup associated with evaluating d-MMOT using our algorithm,
along with speedups associated with directly computing the gradient. Next, we
compute the construction in a series of neural network tasks associated with ensur-
ing distributional similarity: fairness, invariant representations, and multi-domain
matching. We provide a complete PyTorch Network Module that packages the above
differentiable DEMD objective and histogram functions, and serves as a plug-and-play
regularization module.

Performance Benchmarks

Figure 6.4 presents NumPy and Torch instantiations of both forward and backward
passes using automatic differentiation and the gradients computed using the dual as
in Section 6.4. As expected, the forward (distance computation) times are comparable,
but the backwards computation scales poorly with the number of distributions to be
updated using automatic differentiation. Our dual setting allows the gradients to
simply be read off (based on the forward pass), leading to no additional computation
overhead during backpropagation.

We compare our DEMD computation to what one may use given existing Optimal
Transport methods in Figure 6.3 (right). Using standard off-the-shelf methods as
a baseline, when the cost is Monge our algorithm provides significant speedups
in computation time, on the scale of orders of magnitude! Further, if the number
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Figure 6.4: Forward/Backward Pass Times for 10 Bins with varying number of distri-
butions, averaged over 10 runs. Forward wall-clock times are comparable, regardless
of backend (left pair: NumPy+SciPy; right pair: PyTorch+AutoGrad). Direct reading
of the gradient via the dual leads to significant gains in backward pass times, where
automatic differentiation scales poorly with the number of distributions.

of distributions and bins increases, the time-cost for existing methods using more
generic LP solvers can become significant, and may become infeasible with generic
solutions via CVXPY (Diamond and Boyd, 2016). We compare our approach to two
off-the-shelf implementations of barycenters via the Python Optimal Transport (POT)
Library (Flamary et al., 2021), along with directly solving the Earth Mover’s problem
via CVXPY. Even for 10 distributions over 10 bins, CVXPY is unable to allocate the
necessary memory using a direct instantiation.

Generalized EM Fairness on Fairness Datasets

With a viable tool in hand, we move to practical applications in machine learning
fairness, which naturally requires enforcing closeness in model outputs. Here, we
construct networks with our DEMD regularizer, where we discretize the final activa-
tion output prior to classification, and push the distributions of this activation to be
similar among sensitive attributes.

Data. We identify 4 common fairness datasets often used to benchmark fair machine
learning algorithms: (1) the German Credit Dataset (Hofmann, 1994), (2) the Adult
Income Dataset (Dua and Graff, 2017), (3) the Communities and Crime Dataset (Red-
mond, 2009), and (4) The ACS Income dataset, recently made available as a large,
population-level demographic dataset (Ding et al., 2021) containing as many as nine
sensitive attributes. We set up a simple three-layer neural network for classification
tasks with the addition of a fairness-type regularizer. We compare our construction
with 4 off-the-shelf plug-in regularizers: (1) No regularization, (2) Demographic
Parity (DP), (3) Equalized Odds (EO), and (4) a histogrammed barycenter construc-
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Table 6.1: Fairness Experiments. Measures evaluated using standard metrics: max-
imum Demographic Parity Gap (DP), maximum Equalized Odds Gap (EO), and
(DEMD). For all measures, lower values are preferred. With comparable accuracy,
DEMD regularization leads to fairer representations as measured by common metrics.
DP and EO measures are scaled by 100 for ease of presentation. Best results shown in
bold.

German Adult Crime ACS-Income

DP EO DEMD DP EO DEMD DP EO DEMD DP EO DEMD

None 17(5) 11(2) 1.69(0.32) 18(1) 13(0) 1.69(0.07) 38(6) 45(3) 2.86(0.38) 37(1) 25(0) 4.78(0.32)

DP-Reg. 16(6) 10(3) 1.5(0.26) 17(1) 13(1) 1.6(0.07) 38(6) 45(3) 2.83(0.39) 48(4) 28(0) 5.02(0.31)

EO-Reg. 17(5) 11(2) 1.69(0.32) 14(1) 12(1) 1.43(0.07) 38(5) 44(3) 2.83(0.39) 38(1) 26(0) 4.82(0.32)

Bary-POT 27(5) 17(1) 1.5(0.21) 18(1) 13(0) 1.64(0.07) 36(5) 44(4) 2.81(0.3) 57(37) 50(44) 4.38(0.16)

DEMD (ours) 14(7) 9(4) 1.41(0.35) 15(1) 12(1) 1.44(0.08) 36(6) 44(3) 2.69(0.44) 33(0) 24(0) 3.6(0.29)

tion. DP and EO regularizers were computed using a PyTorch version of FairLearn
(Bird et al., 2020), and the barycenter version was implemented using POT library
(with GPU backend). Because the scale of the regularization term is not directly
comparable, we sweep regularization weights and select the best over all measures
for a each dataset/regularizer pair. We use 10 bins and replicate all experiments over
three random seeds.

Models. We set up two model settings with a standard logistic regressor and a
2-layer neural network. We compare three types of plug-in regularizers: (1) Demo-
graphic Parity (DP), (2) Equalized Odds (EO), and (3) the Generalized EMD. DP
and EO regularizers were computed using a PyTorch implementation of FairLearn
(Bird et al., 2020).

Results. In the summary in Table 6.1, models were selected with the largest regu-
larization weight before accuracy dropped significantly. When accuracies are com-
parable, we see good performance (when minimizing DEMD regularizer) against
baseline methods. Notably, when accuracies are similar across methods, minimizing
DEMD tends to give better (lower) fairness measures across all datasets. Summary:
DEMD on the final network layer helps control multiple fairness measures.
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Table 6.2: Harmonization Experiments. Evaluations conducted along three metrics,
Accuracy (ACC), Adversarial measure (ADV) and Maximum Mean Discrepancy
(MMD). A lower value ↓ of ADV and MMD indicate successful harmonization across
the different groups. A higher ACC with a small drop from baseline is preferred.

German Adult Crime ACS-Income

ACC ↑ ADV ↓ MMD ↓ ACC ↑ ADV ↓ MMD ↓ ACC ↑ ADV ↓ MMD ↓ ACC ↑ ADV ↓ MMD ↓

None 74(0.9) 93(1.3) 7.7(0.8) 84(0.1) 83(0.1) 9.8(0.3) 85(0.2) 77(0.5) 14(0.1) 78(0.1) 98(0.7) 160(2)

Li et al. 73(1.5) 92(1.3) 1.5(0.3) 84(0.1) 83(0.1) 3.1(0.3) 85(0.5) 76(1.6) 12(1.0) 78(0.1) 97(0.5) 17(1.2)

Xie et al. 76(1.3) 93(0.6) 1.2(0.2) 84(0.04) 81(0.7) 4.2(2.4) 85(0.2) 76(0.7) 15(0.6) 78(0.1) 94(5.6) 99(2.9)

DEMD 74(1.1) 93(0.4) 2.1(0.4) 84(0.03) 82(0.2) 5.3(1.4) 83(0.3) 72(1.0) 7.1(1.0) 77(0.4) 96(0.5) 26(3.9)

Harmonization for Invariant Representations

Having evaluated the use of the DEMD layer to constrain the neural network for
fairness measures, we will now move to a more general problem of deriving invariant
representations from the datasets. Here, invariance is sought in regard to the sensitive
attributes. Recent works (Lokhande et al., 2022) on invariant representation learning
propose leveraging an encoder-decoder architectures to map the dataset features
to latent space representations. The latent space representations are penalized to
match or harmonize the distributions across several groups in the dataset. In contrast
to the previous section, the goal here is to identify a good mapping in the latent
space that is devoid of any group-related information in the dataset. Consequently,
our evaluation metrics test if the latent representations have a lower value of (i)
ADV, adversarial measure and (ii) MMD, maximum mean discrepancy measure.
The measure ADV tests to what extent can a separate neural network predict the
group information from the latent features. Alternatively, the MMD scores measure
the distance between the probability distributions across groups. Prior works such
as Li et al. (2014) and Xie et al. (2017) optimize each of these measures separately.
Our experiments (Table 6.2) show the DEMD layer performs competitively with the
baselines when applied on the latent space. Interestingly, these performance gains
come despite not directly optimizing the harmonization measures, in contrast to
baselines, which require several practical adjustments (batch variants and secondary
neural networks). Summary: DEMD as an intermediate layer can be used to derive
invariant representations efficiently.
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Figure 6.5: Six MWGAN+DEMD CelebA image translation results. Each row corre-
sponds to a random sample in the validation set. The leftmost image is the original
source image, and sequential columns represent translations to (1) Blonde Hair, (2)
Glasses, (3) Moustache, and (4) Pale Skin. Using DEMD as a relaxation to the Multi-
ple Marginal Matching problem facilitates high quality images translation. For more
results see Appendix C.3.

Multi-domain Image Translation

We apply our construction to a recent multi-marginal GAN framing of multi-domain
image translation. With the goal of learning a mapping for a source image to multiple
target domains, a focal point of recent literature has been to reduce the computational
requirements of training individual models for each target, and learn a concurrent
matching problem over a number of shared parameters or networks. MWGAN (Cao
et al., 2019) set up a Multiple Marginal Matching problem in this context. Extending
upon their key observation that inter-domain constraints can be measured via the
gradients for each domain, we instantiate our DEMD layer over the gradient norms
computed for each sample in a batch per group. Specifically, DEMD minimizes
the differences between the distributions over the gradient norms across all target
domains. Using a weight of 100 for both regularizers, we observe similar performance
when compared to the original MWGAN construction. In Figure 6.5 we show a few
samples generated over an image translation task on the CelebA dataset. Here, we aim
to translate original dataset images to ones with specific target attributes. Summary:
Multi-domain image translation can be conducted by adding a DEMD layer in the
native GAN construction.
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Figure 6.6: Sliced DEMD as a function of number of projections.

6.6 Conclusion
We presented an efficient solution for solving common practical multi-marginal
optimal transport problems. Our construction is significantly cheaper to compute
compared to similar methods, and allows for large numbers of distributions to be
matched in common DNN pipelines. Our implementation allows imposing fairness
constraints for a variety of applications, including those with many groups, without
the need for pairwise measures. As such, subgroup fairness (Kearns et al., 2018) is
an interesting problem setting that we believe can benefit: intersections of protected
attributes exponentially increase the number of “subgroups”, and as such an efficient
method may be valuable. Other properties such as Minkowski additivity that have
not been explicitly leveraged in our experiments may also be a worthwhile direction
to explore.

One limitation of DEMD is its inability to be directly applied to distributions
over multi-dimensional discrete spaces, such as latent spaces common in genera-
tive models. Slicing is a heuristic that has been shown to work well. To evaluate
feasibility, we embed distributions over multi-dimensional continuous spaces, take
random projections over 1-D spaces, and recompute our DEMD measure. Our gains
in the many-distribution setting extend here as well: over a 64-dimensional latent
space embedding of CelebA, we can efficiently compute our DEMD measure over
all 40 attribute subgroups, and observe convergent behavior w.r.t. the number of
projections.
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Chapter 7

Follow-up and Future work

From features, parameters, and subsets, the above work has tackled the problem of
modern subset selection uniquely informed by the particular method and application.
Adapting ideas from scan statistics, differential geometry, tensor decompositions,
conditional independence, and optimal transport, we are able to efficiently identify
subsets important for myraid machine learning applications, including disease under-
standing, model compression, machine unlearning, and fairness. In the progression
of this thesis, we have been able to concretely explore and contribute to the fast-
growing developments in both theoretical machine learning as well as widespread
application.

With all of this in place, we can now take a look at ongoing offshoots of this
work building towards exciting and developing directions of research. This work has
been and continues to be extended in a number of different theoretical and empirical
directions, and here we briefly describe a few of them prior to a final note concluding
the dissertation.

7.1 Analyzing Disease in Functional MRI via
Covariance Trajectories

Work in Chapters 3 and 4 has been further developed for a number of other ap-
plications. The covariance trajectory analysis methods have been extended to the
analysis of other Alzheimer’s Disease populations (Hwang et al., 2020b), and work
on understanding and localizing temporal lobe epilepsy measured over resting-state
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functional MRI acquisitions is under review.

Brain Network Abnormalities in Alzheimer’s Disease

Rs-fMRI has been shown to be a valuable neuroimaging modality to study the patho-
physiological mechanisms and effects of Alzheimer’s Disease. However, most existing
brain network modeling frameworks for rs-fMRI often do not account for the com-
bined statistical and temporal dependencies underlying dynamic functional connec-
tivity (dFC) in a statistically robust manner, which may be limiting our understanding
of altered brain organization in disease. To address these issues, in this work we
demonstrate that the covariance trajectory methods above can characterize dFC as
covariance trajectories on the Riemannian manifold.

In this follow-up work, we leverage a different setup of the trajectory analysis in
Chapter 3. Here, we have a much larger number of timepoints: compared to patient
site visits, we have functional MRI measurements occurring at a rate of approximately
once per second for scans ranging from 5 to 10 minutes. While the methods above
can be applied, the computational cost, while not exponential, still grows at a rate
infeasible for this application.

To address this, we construct a “windowed" approach, where we set specific win-
dow sizes and stride lengths such that our trajectory spans the length of the scan, and
smoothly estimates the continuous trajectory through overlapping samples. We fit the
trajectories for each subject and take corresponding means for the likelihood statistics
and follow the hypothesis testing as above. Experimental results demonstrated that
the approach is capable of identifying differential effects in large-scale functional
networks altered in Alzheimer’s Disease in a way that overcomes statistical challenges
common with many neuroimaging studies.

Characterizing the Epilepsy Connectome

Building on the developments adapting these methods to functional MRI, we deploy
and extend the windowed-approaches to the study of temporal-lobe epilepsy (TLE),
where disease signals are known to cause widespread disruptions in connectivity
dynamics within the well-studied epileptogenic network, but it is not yet clear if and
to what extent other networks are perturbed in TLE.
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Figure 7.1: Functional networks exhibiting significant first- and second-order group
differences with the corresponding estimated null distribution and alternative statistic
(red) using our pipeline (brain visualization from right).

Figure 7.2: Networks exhibiting significant first- and second-order group differences
using the proposed method with the corresponding estimated null distribution and
alternative statistic: (from left to right) Subcortical, Insular and Frontal Opercular
Cortex, Inferior Frontal Cortex, Orbital and Polar Frontal Cortex. S - saggital view, R -
visualization from the right, F - visualization from the front.

Experimentally, we demonstrate that the approach identifies distinct subsets of
temporally evolving connectivity features that stratify TLE patients and healthy
controls, which map to altered connectivity at the network-scale.

The ideas in these chapters have also contributed to the understanding and mod-
eling of uncertainty in recurrent models (Hwang et al., 2020a), and more generally
towards efficient Bayesian methods for deep Monte Carlo methods (Nazarovs et al.,
2021). Applications based on modeling disease progression as a function of both
static and time-varying variables was extended to “deepify-ing" mixed effects mod-
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els (Xiong et al., 2019b). Interesting developments on the tensor decomposition side
have led to work combining ideas in earlier work inarchitecture search (Xiong et al.,
2019c) with such compression methods, influencing high visibility publications by
peers (Xiong et al., 2021).

7.2 Building Plug-and-Play Tools for Discrete Optimal
Transport

The rate of development and research in machine learning and associated applica-
tions continues at its current pace largely due to easily deployable tools that operate
seemlessly with existing workflows. PyTorch, Tensorflow, and all associated software
packages have enabled this growth. In fact, concurrent to this work, a separate group
had identified similar insights to ours, and was similarly reviewed and published
with great interest at the same conference (Just et al., 2023). While there have been
significant developments in Optimal Transport and its associated uses in deep learn-
ing, turnkey tools remain somewhat lacking for a number of reasons, as described in
Chapter 6.

Building upon the theoretical efficiencies of the d-EMD solver and minimizer, we
are developing a plug-in for the Python Optimal Transport library, with the goal of
enabling optimal transport researchers to more easily develop methods for both pure
transportation problems, as well as methods that incorporate with automatic differ-
entiation pipelines. With the ability to solve larger-scale problems efficiently, users
can more easily solve problems with high-dimensional data that would otherwise be
infeasible with existing off-the-shelf solvers.

As noted, the efficient multi-marginal solution opens the door to a large number
of domains unstudied due to computational cost. With approachable open-source
code we hope to expand the tools described beyond one-dimensional distributions
to problems in computer vision, both over two dimensional image spaces as well
as beyond. New computational bottlenecks may arise as the distributions become
higher-order tensors, which may themselves lead to the need for new technical insight.

Building upon the applications in fairness and the ideas related to subgroup fair-
ness mentioned at the end of Chapter 6, we hope to specifically develop and merge
existing fairness software stacks with our tools. Theoretically, subgroup fairness im-
plies particular relationships among distributions, and as such interesting algorithmic
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and computational tools may be enabled under assumptions typical in subgroup
settings.

7.3 Interpretability in Deep Models
Work in unlearning in Chapter 5 is relatively nascent, but excitement in the field is
growing and a number of works have been motivated by recent successes. Meth-
ods for directly measuring, and perhaps even promoting or reducing conditional
independence are beginning to be explored. Motivated by the discretization ideas
in Chapter 6 alongside conditional independence, a particular direction of interest
is that of general interpretability within continuous and typically black-box models.
When a system is a large, complex function with high dimension and nonlinearity,
expecting sparse solutions that also correspond to clear demarcations within the task
or data is extremely optimistic.

Using methods described in the introduction such as activation maps or Shap-
ley values typically leads to some form of “blame" in a continuous sense. These
approaches are still being actively developed, and even now efficient approaches to
“searching" or “identifying" over large supersets are being explored, with kernel and
deep-learning based approaches in place to approximate these set functions.

These methods lead to a feature or parameter subset that has the largest (perhaps
local) influence, but it unclear whether this translate directly to dependence. Conditional
independence may be exactly the measure we are truly interested in, and equipped
with a reasonable measure, it seems promising to explore its application within the
broader space of interpretability. While the CODEC measure used here is somewhat
simple, it does suffer from similar practical computational hurdles, albeit scaling
polynomially compared to the direct set functions e.g., Shapley values. The extensions
of CODEC as it serves as a drop-in comparison to existing measures looks to be an
exciting direction of development as the interest and need for interpretability of large
models grows.
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A Final Note
As noted, current state-of-the-art machine learning research is moving at an accel-
erating pace. During the time of putting together this text, previously promising
directions of research interest in the community have come and gone. The excep-
tional performance of transformer models has spurred exponential developments
in language models, bleeding into vision domains where previous work primarily
focused on convolutional methods.

The field is now at a point where almost all high-visibility work can only be done
with large language models. The development and deployment of GPT-2, ChatGPT,
and its contemporaries has all but enveloped interest in artificial intelligence and
machine learning. While the ideas above could be independently researched, it is
almost a requirement that they now be developed with application to large language
models in mind.

Importantly, this accelerating pace of innovation does not appear to be slowing,
and it is difficult to predict what will be the most important new development, given
timelines for real-world performance beating state-of-the-art is now on the order of
months.

The excitement of these developments notwithstanding, concerns surrounding
ideas motivating this thesis are becoming more and more important as well as evident,
with respect to fairness, accountability, and safety. Aligning models to the goals of
stakeholders is of increasing importance as the models’ ability to affect the world
grows, and I hope that we as machine learning researchers, and as humans, rise to
the task.
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Appendix A

Second Order Group Differences
Theoretical and Experimental Details

A.1 Technical Proofs.

Proof of Lemma 3.18

To remind the reader, this result was necessary in order to allow us to reduce the
number of subgraphs (regions) that need to be evaluated over the graph. By bound-
ing the covering number we have a guarantee that we do not need to consider an
exponential number of subgraphs in order to find a localization.

Proof. To upper bound N(A, ϵ), we first construct the ϵ-covering set of R(A) under
metric d. To this end, we decomposeR(A) into several disjoint sets

Rj(A) =
{

B(v, r) ∈ R(A) :
(

1− (j + 1)ϵ
2

)
A < |E(B(v, r))| ≤

(
1− jϵ

2

)
A

}
,

for j = 0, 1, . . . , ⌈1
ϵ
⌉. Our strategy is to construct ϵ-covering set for each setRj(A).

We only construct ϵ-covering set forR0(A);Rj(A) (j ≥ 1) can be treated similarly.
To construct the ϵ-covering set forR0(A), we denote by dv,r the largest positive number
such that

|E(B(v, r − dv,r))|
|E(B(v, r))| ≥ 1− ϵ

2 , (A.1)
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for every v ∈ V and r ∈ N. Let D1 the collection of dv,r such that B(v, r) ∈ R0(A), i.e.

D1 = {dv,r : B(v, r) ∈ R0(A)},

and V1 the collection of nodes such that B(v, r) ∈ R0(A), i.e.

V1 = {v : B(v, r) ∈ R0(A)}.

We pick up the largest number in D1, denoted by dv1,r1 , i.e. dv1,r1 ≥ dv,r ∀ dv,r ∈ D1

and define Ṽ1 as
Ṽ1 = {v ∈ V1 : v ∈ B(v1, dv1,r1/2)}.

After defining Ṽ1, D2 and V2 can be defined as

D2 = D1 \ {dv,r : v ∈ Ṽ1} and V2 = V1 \ Ṽ1.

Then we can pick up the largest number in D2, denote by dv2,r2 and Ṽ2 can be defined
similarly. We can repeat the above process until DM and VM are empty for some
M .We actually obtain a partition of V1,

M⋃
i=1
Ṽi = V1 and Ṽi1 ∩ Ṽi2 = ∅ 1 ≤ i1 < i2 ≤M.

Based on dv1,r1 , . . . , dvM ,rM
, we are ready to prove the set

R0(A, ϵ) = {B(vi, ri) : 1 ≤ i ≤M}

is actually an ϵ-covering set forR0(A). To this end, it is equivalent to show that for
arbitrary B(v′, r′) ∈ R0(A), we have

d(B(v′, r′), B(vi, ri)) ≤ ϵ (A.2)

when v′ ∈ Ṽi. To show (A.2), we consider two cases where r′ > ri − dvi,ri
/2 and

r′ ≤ ri − dvi,ri
/2. When r′ > ri − dvi,ri

/2, then

B(vi, ri − dvi,ri
) ⊂ B(v′, r′).



132

Combining above result, (A.1), and the definition ofR0(A) yields

|E(B(v′, r′)) ∩ E(B(vi, ri))|√
|E(B(v′, r′))||E(B(vi, ri))|

≥ |E(B(vi, ri − dvi,ri
))|√

|E(B(v′, r′))||E(B(vi, ri))|

≥
√

1− ϵ

2
|E(B(vi, ri − dri

))|
|E(B(v′, r′))|

≥1− ϵ.

On the other hand, if r′ ≤ ri − dvi,ri
/2, then

B(v′, r′) ⊂ B(vi, ri). (A.3)

By definition ofR0(A), we can get

|E(B(v′, r′)) ∩ E(B(vi, ri))|√
|E(B(v′, r′))||E(B(vi, ri))|

≥
√
|
E

(B(v′, r′))||E(B(vi, ri))| ≥ 1− ϵ.

Therefore, (A.2) is proved andR0(A, ϵ) is an ϵ-covering set forR0(A).
The rest of the proof is to bound the cardinality of R0(A, ϵ), i.e. M . Note that

(3.17) implies there exists some constant DH,S only depending on H and S such that,
for any v ∈ V and r ∈ N,

|E(B(v, r/2))| ≥ DH,S|E(B(v, r))|.

By the definition of dvi,ri
, we can ensure B(vi, dvi,ri

/4) are disjoint. Hence, this implies

|E(Ṽi)| ≥ |E(B(vi, dvi,ri
/4))| ≥ D2

H,S|E(B(vi, dvi,ri
))| ≥ D2

H,SHAϵS/2S+1.

The last inequality is suggested by (3.17) and (A.1). The volume argument yields

M ≤ |E|
D2

H,SHAϵS/2S+1 ≤
2S+1

D2
H,SH

|E|
A

(1
ϵ

)S

(3.18) is obtained upon application of the above to eachRj(A).



133

Proof of Theorem 3.19

Before we are ready to prove Theorem 3.19, we need the following result:

Lemma A.1. Let Y1, . . . , Yd be i.i.d. standard Gaussian variable, i.e. N(0, 1) and a1, . . . , ad

be a sequence of numbers. If

Z =
d∑

i=1
ai(Y 2

i − 1), (A.4)

then
P(|Z| ≥ 2|a|2

√
x + 2|a|∞x) ≤ 2 exp(−x) (A.5)

where |a|2 =
√∑d

i=1 a2
i and |a|∞ = maxi=1,...,d |ai|.

Proof. This is a direct extension of lemma 1 in Laurent and Massart (2000) to the
negative case. We follow arguments similar to theirs. Let ϕ(x) be the the logarithm of
the Laplace transform of Y 2

i − 1. For any −1/2 < x < 1/2,

ϕ(x) = log
(
E
(
exp(x(Y 2

i − 1))
))

= −x− 1
2 log(1− 2x) ≤ x2

1− 2|x| .

This leads to

log(E(exZ)) =
d∑

i=1
log

(
E
(
exp(aix(Y 2

i − 1))
))

≤
d∑

i=1

a2
i x

2

1− 2|ai|x

≤ |a|22x2

1− 2|a|∞x

With the same arguments in Laurent and Massart (2000), we could prove that

P
(
Z ≥ 2|a|∞x + 2|a|2

√
x
)
≤ exp(−x).

The other direction can be proved if we apply the same argument for −Z.

With this in hand we proceed to prove Theorem 3.19.

Proof. In the following proof, C always refers to some constant, although its value may
change from place to place. First, we prove (3.22). To this end, we prove concentration
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inequalities for LR for some R and LR1 −LR2 for some R1 ̸= R2. Since we assume the
noise follows normal distribution, we have

(β̂R
1 − β̂R

2 )T Σ−1
R (β̂R

1 − β̂R
2 ) =

∑
X2

i − (∑Xi)2

2 ∥β̂R
1 − β̂R

2 ∥2 ∼ χ2
|E(R)|.

By tail bound for χ2 random variables (see e.g. Laurent and Massart (2000)), we can
yield

P

LR > 2t + 2t2√
|E(R)|

 ≤ exp(−t2). (A.6)

By definition, LR1 − LR2 can be written as

LR1 − LR2 =
∑

i∈R1\R2 Zi√
|E(R1)|

+
 1√
|E(R1)|

− 1√
|E(R2)|

 ∑
i∈R1∩R2

Zi −
∑

i∈R2\R1 Zi√
|E(R2)|

where Zi are independent random variable following distribution χ2
1 − 1. Lemma A.1

implies

P
(
|LR1 − LR2| > 2

√
2d(R1, R2)t + 2t2

min(|E(R1)|, |E(R2)|)

)
≤ 2 exp(−t2). (A.7)

We now proceed to prove (3.22) by applying a chaining argument (See Tala-
grand (2006)) and concentration inequalities (A.6) and (A.7). RecallRapp(A, ϵ) is the
smallest ϵ-covering set ofR(A) and N(A, ϵ) is the covering number ofR(A). For any
subgraph candidate R, we denote by

πl(R) = arg minR′∈Rapp(A,e−l)d(R, R′).

For any l∗ > l∗, which will be specified later, we write maxR∈R(A) LR into three parts

max
R∈R(A)

LR ≤ max
R∈R(A)

|LR − Lπl∗ (R)|+
l∗−1∑
l=l∗

max
R∈R(A)

|Lπl+1(R) − Lπl(R)|+ max
R∈R(A)

Lπl∗ (R).

Now, we bound these three terms above separately.

Term 1. Let l∗ = 2 log |E|. By concentration inequality (A.7) and union bound,
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we have

P

 max
R∈R(A)

|LR − Lπl∗ (R)| >
2
√

2(x + log |E|)
|E|

+ 4x + 8 log |E|
A


≤|R(A)|P

|LR − Lπl∗ (R)| >
2
√

2(x + log |E|)
|E|

+ 4x + 8 log |E|
A


≤2 |R(A)|
|E|2

exp(−x) ≤ 2 exp(−x)

for x < log |E|. Therefore, we have

P
(

max
R∈R(A)

|LR − Lπl∗ (R)| >
C(x + log |E|)

A

)
≤ exp(−x),

for x < log |E|.

Term 2. Let l∗ = log log(|E|/A). Recall that the Avocado assumption (3.17)
suggests that

N(A, ϵ) ≤ CH,S
|E|
A

(1
ϵ

)S+1
. (A.8)

Applying concentration inequality (A.6) along with

t =

√√√√log
(
|E|
A

)
+ (S + 1) log log

(
|E|
A

)
+ x + C (A.9)

and the union bound, we have

P
(

max
R∈R(A)

Lπl∗ (R) > 2t + 2t2
√

A

)

≤N

(
A,

1
log(|E|/A)

)
P
(

Lπl∗ (R) > 2t + 2t2
√

A

)

≤CH,S
|E|
A

(
log |E|

A

)S+1

P
(

Lπl∗ (R) > 2t + 2t2
√

A

)
≤ exp(−x)
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for x < log |E|. Here we also apply condition (3.21). Therefore, we obtain

P

 max
R∈R(A)

Lπl∗ (R) > 2

√√√√log
(
|E|
A

)
+ (S + 1) log log

(
|E|
A

)
+ x + C

 ≤ exp(−x)

for x < log |E|.

Term 3. For any given l, application of concentration inequality (A.7), covering
number condition (A.8), and the union bound yields,

P

 max
R∈R(A)

|Lπl+1(R) − Lπl(R)| >
√

C(log(|E|/A) + l + x)
el

+ C(log(|E|/A) + l + x)
A


≤CH,S

|E|
A

e(l+1)(S+1)

P

|Lπl+1(R) − Lπl(R)| >
√

C(log(|E|/A) + l + x)
el

+ C(log(|E|/A) + l + x)
A


≤exp(−x)

l2 .

for any x < log |E|. With another standard application of the union bound, we
have

P

l∗−1∑
l=l∗

max
R∈R(A)

|Lπl+1(R) − Lπl(R)| >

√√√√C(log(|E|/A) + x)
log(|E|/A) + log2 |E|+ x log |E|

A


≤

l∗−1∑
l=l∗

P

 max
R∈R(A)

|Lπl+1(R) − Lπl(R)| >
√

C(log(|E|/A) + l + x)
el

+ C(log(|E|/A) + l + x)
A


≤

l∗−1∑
l=l∗

exp(−x)
l2

≤2 exp(−x).

Putting the three terms above together yields

P

 max
R∈R(A)

LR > 2

√√√√log
(
|E|
A

)
+ C(x + 1)

 ≤ 4
log(e|E|/A) exp(−x),

where we apply A≫ log2 |E| and the inequalities
√

a + b ≤
√

a +
√

b and
√

a + b ≤
√

a + b/
√

a.
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Now, we apply this bound to A = |E|2−k, k ≥ 0 yielding

P

max
R∈R

LR − 2

√√√√log |E|
|E(R)|

 > C(x + 1)
 ≤ 8 exp(−x).

This immediately suggests that qα = O(1).
Now, let’s turn to the case when a subgraph is significant, that is to prove (3.24).

Assume the significant region is R0. Using standard statistics we calculate the mean
and variance of LR0

E(LR0) =
(βR0

1 − βR0
2 )T Σ−1

R0 (βR0
1 − βR0

2 )√
|E(R0)|

V ar(LR0) = 2 + 4
(βR0

1 − βR0
2 )T Σ−1

R0 (βR0
1 − βR0

2 )
|E(R0)|

.

By Chebyshev’s inequality, we have

P

 |LR0 − E(LR0)|√
V ar(LR0)

> x

 ≤ 1
x2 . (A.10)

If (βR0
1 − βR0

2 )T Σ−1
R0 (βR0

1 − βR0
2 ) ≥ |E(R0)|, then (A.10) suggests

P(LR0 >
√
|E(R0)|)→ 1, |E| → ∞

by taking x as a sequence (e.g., log log(|E(R0)|)) which increases slow enough in
(A.10). This leads to (3.24). If

(βR0
1 − βR0

2 )T Σ−1
R0 (βR0

1 − βR0
2 ) < |E(R0)|,

then V ar(LR0) < 6 and so (3.23) and (A.10) imply

P

LR0 − 2

√√√√ |E|
|E(R0)|

> qα

→ 1, as |E| → ∞.
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A.2 Implementation Details.
The workflow below describes one run of our model given a sparsity is specified for
the oracle graph procedure.

1. Oracle Graph. As noted in the main thesis, we use graphical lasso (glasso) to
generate an oracle graph, which allows to define structured regions (subgraphs)
for scan statistics on graphs. Each element of the input matrix C in (2.13) for
glasso is generated by calculating the slope for each position of the covariance
matrix across the predictors for each group, and then taking the difference be-
tween the groups. Equation (2.13), repeated here, is then solved using existing
MATLAB interfaces to fast C implementations.

Θ = arg min
Θ⪰0

− log |Θ|+ tr(CΘ) + λ||Θ||1 (A.11)

With sparsity parameter λ, this procedure generates a reasonably sparse oracle
graph.

2. Candidate Subgraphs. With the oracle graph in hand, we then construct the
set of all ball subgraphs, as defined in Section 3.4. By limiting ourselves to only
a few (D|V |) subgraphs, we can perform scan statistics more efficiently.

3. Characterizing the Null Distribution. In the case where we have few samples,
we cannot directly apply the χ2 result. In these cases, the null distribution is
then characterized using permutation testing over all candidate subgraphs. For
each subgraph the input data is permuted a number of times to generate a good
representation of the distribution at that subgraph. All normalized (but not
size-corrected) scan statistics are then calculated for all permutations across all
subsets and then combined in order to create the null distribution.

4. Calculating the Test Statistic For a specific subset of the data, the scan statistic is
calculated and corrected as described in Section 3.4, over the original grouping
of the data. For each group, the logitudinal-covariance GLM (3.7) is computed
using the procedures in Section 3.2.

5. Region Identification. We first identify all subsets whose statistic falls above the
α-level threshold specified. Then the subset-collection procedure outlined in the
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main thesis, developed by Jeng et al. (2010), is applied, and the non-overlapping
critical regions are output.

Numerical Considerations

In practice, our empirical covariance matrices calculated on the sample data may not
be positive definite. The matrix can be rank deficient when we do not have enough
linearly independent samples. In addition, we may use a rank correlation matrix in
its place, which also may not be PD. To resolve this issue, we project the empirical
covariance matrix onto the symmetric-positive definite SPD(n) manifold. We first
apply a standard procedure for transforming a symmetric matrix into a symmetric
positive semidefinite (SPSD) one. As described in Wu et al. (2005), the standard
eigenvalue thresholding, or clipping, λSP SD = max(0, λ) is sensible since it provides
the optimal projection of any matrix onto the SPSD manifold. Let Σ = UΛU⊤ be
the eigenvalue decomposition of the matrix Σ. The SPSD projection of Σ is then
projSP SD(Σ) = Udiag(max(λ1, 0), . . . , max(λn, 0))U⊤. And so to project to the SPD(n)
manifold we can simply add some epsilon to each element of the diagonal:

projSP D(Σ) = Udiag(max(λ1, 0), . . . , max(λn, 0))U⊤ + ϵI (A.12)

A remark on the term ϵI will be useful here. We find that in experiments, numerical
problems can arise if the smallest eigenvalue of the projected matrix is too small. By
iteratively adding a small ϵ until the smallest eigenvalue is above our threshold, we
ensure that the matrix is positive definite for the exponential and logarithmic maps.
They are necessary for moving back and forth between the manifold and the tangent
space.

A note on localization accuracy

In addition to simply checking whether or not we were able to correctly answer the
hypothesis test group difference, it is important that if a significance is found, that
it is found in the features that were originally used to generate the data. Using the
same simulation setup as previous, we take the union of all subsets returned to be
significant and check if each of the truly changing features pt are contained within
the superset.
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In this particular case we find that our localization is only dependent on the
graphical lasso procedure we use to generate the oracle graph. As long as the sparsity
specified is large enough to include at least pt edges, we find that in every simulation
where we find a significant difference, the features that express the difference are a
superset of the true features.

A.3 Preclinical AD Extended Details and Results.

Data and Variable Descriptions

In our neuroimaging experiments, a large number of our features describe specific
and localized regions of the brain across multiple imaging modalities. Below we list
and describe each of regions for each modality, and give a brief background on each
of methods used to acquire the data. We also include the list of cognitive scores used
in our analysis.

PET Imaging

Positron emission tomography has become an increasingly popular method of imag-
ing the brain, specifically in the areas where cognitive decline can be strongly corre-
lated with the specific matter being imaged. Pittsburgh compound B (PiB) was used
as the tracer for these images, and the 16 mirrored (Left and Right) regions labeled
below were selected as strongly correlated with the development and progression of
Alzheimer’s Disease.

1. PiB Angular L/R

2. PiB Cingulum Ant L/R

3. PiB Cingulum Post L/R

4. PiB Frontal Med Orb L/R

5. PiB Precuneus L/R

6. PiB SupraMarginal L/R

7. PiB Temporal Mid L/R

8. PiB Temporal Sup L/R
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Figure A.1: 16 Positron Emission Tomography (PET) regions.

The average of the voxel values in each ROI (region of interest) of the brain are
used for imaging features. The 16 regions are highlighted in Figure A.1.
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DTI Imaging

Diffusion tensor imaging is used to measure the restricted diffusion of water through
and about regions of the brain. The 48 regions here are the aggregated measurements
of total rates of diffusion for each voxel in that region. The two measurements,
Fractional Anisotropy (FA) and Mean Diffusivity (MD) collectively well describe
the diffusion in a specific region. The following is the full list of regions used in our
analysis. Regions that spanned across both the left and right sides of the brain are
indicated as such, and were treated as separate and independent in our analyses.

1. Middle cerebellar peduncle

2. Pontine crossing tract (a part of MCP)

3. Genu of corpus callosum

4. Body of corpus callosum

5. Splenium of corpus callosum

6. Fornix (column and body of fornix)

7. Corticospinal tract R/L

8. Medial lemniscus R/L

9. Inferior cerebellar peduncle R/L

10. Superior cerebellar peduncle R/L

11. Cerebral peduncle R/L

12. Anterior limb of internal capsule R/L

13. Posterior limb of internal capsule R/L

14. Retrolenticular part of internal capsule
R/L

15. Anterior corona radiata R/L

16. Superior corona radiata R/L

17. Posterior corona radiata R/L

18. Posterior thalamic radiation (include
optic radiation) R/L

19. Sagittal stratum (include inferior lon-
gitidinal fasciculus and inferior fronto-
occipital fasciculus) R/L

20. External capsule R/L

21. Cingulum (cingulate gyrus) R/L

22. Cingulum (hippocampus) R/L

23. Fornix (cres) / Stria terminalis (can
not be resolved with current resolution)
R/L

24. Superior longitudinal fasciculus R/L

25. Superior fronto-occipital fasciculus
(could be a part of anterior internal
capsule) R/L

26. Uncinate fasciculus R/L

27. Tapetum R/L
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Figure A.2: 17 major DTI fiber bundles measured using Fractional Anisotropy (FA).
The 48 selected for our analysis include a subset of these, which have been identified
as critical regions that signal the beginnings of cognitive impairment.

Cognitive Evaluations

The battery of cognitive test scores in our analysis included a breadth of evaluations
chosen specifically for their coverage of various measures of cognition. Among all
tests given to the cohort, the following 17 were selected by expert clinicians and
researchers in the field for their coverage and their potential value in understanding
trends across groups.

1. WAIS-III Digit Span Forward Raw Score

2. WAIS-III Digit Span Backward Raw
Score

3. WAIS-III Letter-Number Sequencing
Raw Score

4. COWAT CFL Score

5. Boston Naming Test Total Score

6. RAVLT Learning Trial A1 Raw Score

7. RAVLT Learning Trial A2 Raw Score

8. RAVLT Learning Trial A3 Raw Score

9. RAVLT Learning Trial A4 Raw Score

10. RAVLT Learning Trial A5 Raw Score

11. RAVLT Learning Trial A6 Raw Score

12. RAVLT Delayed Recall Raw Score

13. Stroop Word/Color-Word Scaled Score

14. Trail-Making Test Part A

15. Trail-Making Test Part B

16. Clock Drawing Test Score

17. Center for Epidemiologic Studies De-
pression Scale Score

WAIS-III. This is the most widely used IQ test. The Digit Span examination is
specifically meant to evaluate the working memory of an individual. Participants
are required to attempt to recall a series of numbers in order, both forwards and
backwards. Letter-Number sequencing reflects a similar idea, but with a mix of
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both numbers and letters in increasing and alphabetical order, and is meant to be an
indicator of more complex mental control Wechsler (2014).

Rey Auditory Visual Learning Test. This test is specifically meant to evaluate all
aspects of memory. Each trial evaluates a different type of memory, ranging from
short-term and working memory to procedural and episodic memory. Schmidt et al.
(1996).

Trail-Making Test. This is a very popular test in providing information about
executive function in the brain. The test consists of drawing lines among a randomly
generated set of points in a square, where each point is labeled with a number. In
Part A, participants must ‘connect the dots’ in increasing numerical order, and in Part
B in increasing numerical and alphabetical order. The score on the test is primarily
dictated by the time in seconds it takes to complete the task for 25 of these ‘dots.’
More background information and normative analyses can be found in Tombaugh
(2004).

Other tests similarly measure various cognitive function. While the Depression
Scale Score did not crop up in any of our analyses here, it has been shown that
depression is strongly associated with AD-related decline Wragg and Jeste (1989).

Detailed Imaging with Cognitive Tests Results

In the following tables we provide additional details of the statistical test we performed
on the preclinical AD cohort. Each set contains a set of features found to display
significant group difference (at the p ≤ 0.05 level) along the covariance trajectory
divided by the group variable indicated.

While some of these associations are well-known, few have been indicated as
novel by AD researchers and clinicians, and to be of interesting value for further
analysis.

Detailed results on larger cohort with only cognitive scores

We also applied our method to a larger cohort consisting of approximately 1500
subjects with varying temporal measurements on the battery of cognitive tests. Each
individual had approximately 3 visits worth of data, and so our total number of
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Amyloid Load (PiB Positivity)

Set
1

PiB Angular L/R PiB Cingulum Ant L/R

PiB Cingulum Post L/R PiB Frontal Med Orb L/R
PiB Precuneus L/R PiB Temporal Sup L/R
PiB Temporal Mid L/R PiB SupraMarginal L

Set
2

FA Cerebral peduncle R FA Cerebral peduncle L

MD Corticospinal tract R MD Corticospinal tract L
Trail-Making Test Part A Score MD Cerebral peduncle R
PET Cingulum Post R

Table A.1: Group difference across Amyloid Load (PiB Positivity)

Gender

Set
1

Rey Audio and Verbal Learn-
ing Test

FA Cingulum L

FA Medial lemniscus L FA Cingulum (hippocampus) L
Set
2

FA Posterior thalamic radia-
tion
(include optic radiation) L

Set
3

FA Corticospinal tract R FA Superior fronto-occipital fas-
ciculus R

Table A.2: Group difference in gender

Genotype: APOE4

Set
1

Digit Span Backward Raw
Score

Stroop Color-word

PiB Cingulum Post L PiB Cingulum Post R
PiB Frontal Med Orb L PiB Frontal Med Orb R
PiB Precuneus L PiB Precuneus R
PiB SupraMarginal PiB Temporal Mid R

Table A.3: Group difference across Genotype APOE4 expression
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Consensus Conference

Set
2

Digit Span Backward Raw
Score

Stroop Color-word

PiB Cingulum Post L PiB Cingulum Post R
PiB Frontal Med Orb L PiB Frontal Med Orb R
PiB Precuneus L PiB Precuneus R
PiB SupraMarginal PiB Temporal Mid R

Table A.4: Group difference across Expert MCI Diagnosis

Algorithmic Cognitive Impairment

Set
1

Boston Naming Test Total
Score

RAVLT Learning Trial A1 Raw
Score

RAVLT Learning Trial A6 Raw
Score

Table A.5: Group Difference Localization Across Algorithmic Impairment

measurements was approximately n = 4000. In addition to the groupings used above,
we were able to use an algorithmic cognitive impairment (ACI) measure to further
evaluate the model against a factor which is known to be group-separating. Below are
the tabulated feature sets identified by our model for each of the group separations
described in the main thesis. In this case to increase interpretability of the results we
limited our search to groups of 3-6 features.

When grouped by genotype, the most indicative subset as shown in Table A.6.
These tests are most closely associated with memory, and we see that no tests of
executive function or spatial ability (Trail-Making or Clock Drawing) were included.

In addition to an algorithmic measure of impairment, a conference of expert
clinicians and researchers have given each individual a clinical impairment diagnosis
for each time they underwent the cognitive battery. Using this as a group separator,
we found a large number of overlapping subsets that displayed significant group
difference at the p = 0.05 level. These are shown in Table A.7. Trail-Making Test Parts
A and B appeared in all identified subsets.
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Genotype: ApoE4

Set
1

WAIS-III Digit Span Backward
Raw Score

RAVLT Learning Trial A3 Raw
Score

RAVLT Learning Trial A4 Raw
Score

RAVLT Learning Trial A5 Raw
Score

Table A.6: Group Difference Localization Across ApoE4 Genotype

Expert Consensus Measure

WAIS-3 Letter-Number Se-
quencing Raw Score

Boston Naming Test Total Score

RAVLT Learning Trial A2 Raw
Score

RAVLT Learning Trial A3 Raw
Score

RAVLT Learning Trial A4 Raw
Score

RAVLT Learning Trial A5 Raw
Score

RAVLT Learning Trial A6 Raw
Score

RAVLT Delayed Recall Raw Score

Trail-Making Test Part A Trail-Making Test Part B
Clock Drawing Test Score Center for Epidemiologic Studies

Depression Scale Score

Table A.7: Group Difference Localization Across Expert Clinical Diagnosis



148

0.0

2.5

5.0

7.5

10.0

12.5

4 8 12
RAVLT Delayed Recall Raw Score

co
un

t

ApoE Negative ApoE Positive

0

100

200

300

400

0 5 10 15
RAVLT Delayed Recall Raw Score

co
un

t

Female Male

0

100

200

300

400

0 5 10 15
RAVLT Delayed Recall Raw Score

co
un

t

FH Negative FH Positive

0

100

200

300

400

500

0 5 10 15
RAVLT Delayed Recall Raw Score

co
un

t

Clinically Impaired Clinically Normal

Figure A.3: Histograms of the Delayed Recall Scores for all time points for the ∼ 4000
individual measurements across different group separations. We note in particular
that the results found from the genotype separation above would have been hard
to identify since given the distributions are extremely overlapping (top left) for this
particular separation.
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Appendix B

Conditional Independence and
Unlearning Theoretical and
Experimental Details

B.1 Theoretical Results

Proof of Lemma 1

Let us take D to be the training set; w.l.o.g. z is the point being removed. Let the
residual dataset be D′ = D \ z. Denote w−

F ull as the weight parameters after doing a
full Hessian update and w−

F oci as the weight parameters after doing a FOCI selected
Hessian update. In an ideal case, we want (w−

F oci, D′)/(w−
F ull, D′) to be as close as

possible to (w∗, D′). Note that we consider both (w∗, D) and (w∗, D′) to be 0 as we
don’t expect model parameters to change drastically for one sample once trained to
convergence.

Lemma B.1. The gap between the gradient residual norm of the FOCI Unlearning update in
Algorithm 4 1 and a full unlearning update via Eq. (5.4) in the main thesis,

||∇L(w−
F oci, D′)||2 − ||∇L(w−

F ull, D′)||2 (B.1)

shrinks as O(1/n2).

Proof. Let w to be a network of many linear layers with possible activation functions;
we can think of the norm as the sum of norm of gradients for each layer. Hence, for
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any model parameters w and dataset D, we have:

||∇L(w, D)||2 :=
∑
l∈L

||∇L(wl, D)||2 (B.2)

FOCI identifies a subset T ⊂ L slices or layers that are to be updated. Let R = L\T
be the remainder of the network which is not updated. Hence, B.2 for (w−

F oci, D′) can
be written as:

||∇L(w−
F oci, D′)||2 :=

∑
l∈L

||∇L(w−
F ocil

, D′)||2 (B.3)

=
∑
l∈T

||∇L(w−
F ocil

, D′)||2 +
∑
l∈R

||∇L(w−
F ocil

, D′)||2 (B.4)

=
∑
l∈T

||∇L(w−
F ocil

, D′)||2 +
∑
l∈R

||∇L(w∗
l , D′)||2 (B.5)

The last line follows from the fact that layers in R are not updated.
We will next show how for the remainder of the dataset D′, the changes in T

propagate minimally when there are a large number of data points, n in the training
set.

W.L.O.G. assume that we have a 3 layer network with the form:

(L3(L2(L1(x))) (B.6)

For the point being removed z := (x, y); let L2 be the intermediate layer which is
selected for update by FOCI. Before the update, activations out of L2 are of the form
a2 = L2(L1(x)) = L2(a1). After the update, activations out of L2 can be written as:

a′
2 = L′

2(L1(x)) = L′
2(a1) (B.7)

= w′
2a1 (B.8)

= (w2 + δw2)a1 (B.9)

= w2a1 + δw2a1 (B.10)

= a2 + δw2a1 (B.11)

The Second line follows because L1 isn’t updated. For the following layer L3, we have
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a3 = L3(a2) before the update. After,

a′
3 = L3(a′

2) (B.12)

= L3(a2 + δw2a1) (B.13)

= L3(a2) +∇L3(a2)δw2a1 +O((δw2a1)2) (B.14)

= L3(a2) + 0 +O((δw2a1)2) (B.15)

The first-order term goes to zero, as L3 has not been updated and we assume full
model convergence.

For the Sekhari et al. (2021) update.

δw2 = 1
(n− 1)(Ĥ−1)

∑
z∈{(xk,yk)}

∇f(ŵ, z) (B.16)

Hence, δ2
w2 ∝

1
n2 . Therefore, for large values of n, the third term in the equation above

approaches 0. So, a′
3 = L3(a2). This shows that propagation is minimal. Similar

arguments regarding null space for over-parameterized deep networks have been
mentioned in Golatkar et al. (2020b).

Now, looking back at the residual gradient norm, we have:

||∇L(w−
F oci, D′)||2 =

∑
l∈T

||∇L(w−
F ocil

, D′)||2+ (B.17)
∑
l∈R

||∇L(w∗
l , D′)||2 (B.18)

Based on the above argument of minimal propagation, the second term above goes to
0 for layers/slices in R. Therefore,

||∇L(w−
F oci, D′)||2 =

∑
l∈T

||∇L(w−
l , D′)||2 (B.19)

and as such the gap between this and the full update is only the difference on the set
R, shrinking as O(1/n2).

Proof of Theorem 5.6

Theorem B.2. Assume that layer-wise sampling probabilities are nonzero. Given (user speci-
fied) unlearning parameters ϵ, δ, the unlearning procedure in Algorithm 4 is (ϵ′, δ′)−forgetting
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where ϵ′ > ϵ, δ′ > δ represent an arbitrary precision (hyperparameter) required for unlearn-
ing. Moreover, iteratively applying our algorithm converges exponentially fast (in expectation)
with respect to the precision gap, that is, takes (at most) O(log 1

gϵ
log 1

gδ
) iterations to output

such a solution where gϵ = ϵ′ − ϵ > 0, gδ = δ′ − δ > 0 are gap parameters.

Proof. Our proof strategy is to show that our update step in Algorithm 1 is a specific
form of Randomized Block Coordinate Descent (R-BCD) method. Then, we simply
apply existing convergence rates of RBCD for general smooth minimization problems.
In particular, our method can be seen as an extension of SEGA method in Corallary
A.7. Gorbunov et al. (2020) where the descent direction is provided by using inexact
inverse hessian metric Loizou and Richtárik (2020). The key difference in our setup
is that the sampling probabilities are computed using the CODEC procedure instead
of the random sampling at each step. We make the following three observation in
our setup that immediately asserts correctness of the procedure.

First, by our construction in equation (5.11) in the main thesis, the sampling
probabilities have full support. That is, the probability of selecting a particular weight
in the neural network is strictly positive since ξ ∼ N (0, σ2), σ > 0 is a continuous
distribution which has unbounded support. Second, the overall rate of speed of
convergence depends on the condition number of the (fixed) Hessian at the optimal
solution since exact (ϵ, δ) unlearning is equivalent to linear least squares problem.
Third, our update step is equivalent to a projected (or sketched) primal step, see
equation 13 in (ArXiv Version Loizou and Richtárik (2019)). From these observations,
we can see that our overall method is equivalent to SEGA in Gorbunov et al. (2020) or
its noisy extension since we use only a small set of samples (to be unlearned) at each
iteration. Consequently, we obtain the deterministic geometric rate of convergence
(in expectation) by applying Corollary A.8. where σ in their work corresponds to the
ϵ′ − ϵ > 0 gap in our setup. Now, to get the probabilistic ϵ′, δ′ unlearning guarantee
for the solution presented by our algorithm, we use Lemma 10 in Sekhari et al. (2021)
on the solution returned, completing our proof.

B.2 Experimental Details
Experiments were conducted using PyTorch 1.8 and CUDA Toolkit 10.2, run on Nvidia
2080 TIs and individual Nvidia A100s. Parallelization only occurred across runs;
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Figure B.1: MNIST Retraining results, comparing the effect of weight decay on un-
learning via our LFOCI unlearning scheme and retraining.

the attached code can be run with any CUDA/PyTorch setup with the appropriate
dependencies.

Markov Blanket Selection

Experimental settings were taken from Yang et al. (2020), with code adapted from
https://github.com/syanga/model-augmented-mutual-information. 5000 samples
were used for generating the data, and 100 trials/perumutations were conducted for
the CIT testing framework.

MNIST Toy Results

Training for MNIST Logistic Regressor models was run using SGD with a learning rate
of 0.1, batch size of 256, and weight decay of 0.01 for 50 epochs. 1000 perturbations
were used for distribution approximation. Privacy parameters were set to ϵ = 0.1, δ =
0.01. Figures and numbers in the main thesis were averaged over 10 replications, for
a random choice of 1000 samples to scrub.

Retraining Comparisons

MNIST: Affects of l2 Regularization and Weight Decay

Repeating the retraining comparison in the main thesis with a larger regularization,
we see that the effects of removal are significantly diminished and the model can
support a larger number of removals before large performance drops.

CIFAR Retraining Comparisons: A Note on Batch Normalization

An important requirement for our retraining experiment is that our residual training
set used for both scrubbing validation and retraining is able to take on any size,

https://github.com/syanga/model-augmented-mutual-information


154

Figure B.2: Retraining Results on CIFAR. Dips occur at removal counts where the
modulus equals 1.

including 1 and any size for which the modulus over the batch size equals 1. This
causes particular problems when models include batch normalization layers: general
practice in training deep neural networks includes the choice of dropping the last
batch, so as to avoid issues of unbalanced batch sizes. For our setting we cannot
drop these batches, because we explicitly want to measure and compute on networks
trained with and without specific samples. While we can “skip" removals during our
experimentation, this can still lead to odd behavior, see Figure B.2. The spikes are
exactly congruent with points in the removal process corresponding to a final batch
size of 1 for retraining. In general, care must be taken when attempting to unlearn
from batchnorm models, and further work may be necessary to adequately address
it, both in theory and practice.

CIFAR-10 Model Comparisons

Models were trained using Torch Hub, with a batch size of 64, learning rate of 0.1 for
all models except VGG-11/bn, for which 0.01 was used. Data augmentation was NOT
used, and weight decay was set to 0.01. 1000 perturbations were used for distribution
approximation. Privacy parameters were set to ϵ = 0.1, δ = 0.01. Figures and numbers
in the main thesis were averaged over 2 replications, for a random choice of 1000
samples to scrub.
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LEDGAR DistillBERT Details

For the NLP experiments, we used a pretrained model from HuggingFace as a start-
ing point. Specifically, we used the transformer model “distilbert-base-uncased",
https://huggingface.co/distilbert-base-uncased which is a distilled version of
the BERT base model, smaller and faster than BERT. It was pretrained on the same
corpus in a self-supervised fashion, using the BERT base model as a teacher. Distil-
BERT Sanh et al. (2019) was pretrained on the raw texts only, without any human
labels. The three losses used for the pre-training are that of distillation loss, masked
language modelling and cosine embedding loss. This pre-trained model was then
fine-tuned for the downstream task of provision classification using the LEDGAR
dataset introduced in (Tuggener et al., 2020). We used the prototypical dataset which
had 13 most common labels based on frequency. The model was fine-tuned for 4
epochs, updating all of it’s parameters without any freezing based on binary cross
entropy loss with class weighting. The labels were converted to one-hot vectors and
hence binary cross entropy loss was used. Learning rate used was 5e−5 and weight
decay of 0.01. No weight decay was applied for bias and normalization layer parame-
ters. We used batch size of 256 and restricted the maximum length of tokens to 128
per data point. Further gradients were clipped based on the infinity norm to a value
of 1.0. We used AdamW optimizer with an epsilon value of 1e−8; and the learning
rate scheduler used was WarmupLinearSchedule both from PyTorch_Transformers.

For unlearning experiments on this model, we remove provisions pertaining to a
specific class. We removed samples from two classes namely “Governing Laws" and
“Terminations" which had the highest and lowest support respectively. We were able
to removed a varying number of samples from these classes based on the selection of
the privacy parameter of ϵ for scrubbing. The results are tabulated in the main part
of the thesis.

VGG-Face Identification Scrubbing

For this setting, the trained model was downloaded from https://www.robots.ox.
ac.uk/~vgg/data/vgg_face/ and converted to PyTorch via https://github.com/
prlz77/vgg-face.pytorch. A partial version of the dataset was constructed using
the list of image URLs, consisting of 100 images for each identity within the set. The
images were processed as described in the original paper (Parkhi et al., 2015).

https://huggingface.co/distilbert-base-uncased
https://www.robots.ox.ac.uk/~vgg/data/vgg_face/
https://www.robots.ox.ac.uk/~vgg/data/vgg_face/
https://github.com/prlz77/vgg-face.pytorch
https://github.com/prlz77/vgg-face.pytorch
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Fine tuning was done for 4 epochs to estimate the Hessian for the sample down-
loaded using SGD with a learning rate of 0.0001 and a weight decay/l2 regularization
of 0.01, with a batch size of 16.

For unlearning, 100 images for a specific identity were randomly ordered and
removed with ϵ = 0.0001, δ = 0.01. 100 perturbations were used to estimate the
activation and loss distributions for L-FOCI.

Person Re-identification

We discuss in more detail the experimental details of unlearning deep neural networks
for the person re-identification task in this section. We consider four different datasets
namely, Market1501 (Zheng et al., 2015), MSMT17 (Wei et al., 2018), PRID (Hirzer
et al., 2011) and QMUL GRID (Loy et al., 2009). We unlearn from different deep neural
networks including ResNet50, a variant of ResNet50 with a fully connected layer
(called Resnet50_fc512), Multi-Level Factorisation Net (MLFN) and MobilNet_V2.
In all cases the models were first trained to reasonable accuracy as per benchmarks
before proceeding with unlearning a randomly selected individual’s identity from the
corresponding dataset. To perform experiments pertaining to person re-identification
we make use of the popular framework torchreid (Zhou et al., 2019). We had to make
changes to the original code in order to make our procedure function correctly in
this framework. We use Adam as the optimizer, a step scheduler and learning rate of
0.0003 across all person re-identification datasets and models used. We use softmax
loss and weights were initialized using a model pre-trained on ImageNet in all cases.
Images were resized to 256 × 128 before being used as input to any of the models.
The number of training epochs was chosen accordingly to allow the training to have
converged. Results from multiple runs involving different models, datasets and the
privacy parameter (ϵ) are conclusive. With lower value of ϵ, e.g. 0.0005, the number
of samples that could be unlearned for a particular class while maintaining model
performance was lower than what could be unlearned for a higher value of the privacy
parameter ϵ, e.g. 0.1. For the smaller datasets, i.e. PRID and QMUL GRID, which have
approximately 2 samples per class, the unlearning procedure lead to more drastic
changes as expected and it could be observed that our selection procedure selected
many more layers to update than what it did for the larger datasets. Activation maps
from some experiments are presented in Figure B.3.
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(a) Scrubbed class (b) Unscrubbed class

Figure B.3: Activation maps from different models (top two rows MLFN, bottom two
MobileNet_V2; both trained on Market_1501) scrubbed for the person on the left. For
each triplet, from (L to R) are the original image, the activation map and its image
overlay. Activations change significantly for the scrubbed sample (compare column 2
to 3) whereas remain stable for the non-scrubbed sample (compare column 5 to 6).
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B.3 Conditional Independence and Parameter Selection
via L-CODEC

Our algorithm is directly adapted from Azadkia and Chatterjee (2019) to our pa-
rameter selection setting. Algorithm 6 shows the procedure, described for arbitrary
random variables in Section 5 of Azadkia and Chatterjee (2019).

While tests for independence exist, CODEC directly estimates explanation of vari-
ance with and without the conditional variable(s) of interest. For readers interested
in conditional independence more generally, and statistical and theoretical founda-
tions, please see Spirtes et al. (2000); Dawid (1979). More recent information-based
formulations can be found in Yang et al. (2020) and references therein.

Algorithm 6: Parameter MB Identification via L-CODEC (L-FOCI)
Data: z′, the full parameter set w indexed by Θ := {1, . . . , d}
Result: Sufficient set P ⊆ Θ
Identify p ∈ Θ that maximizes T (z′, wp)
Set P = {p}
while T (z′, wΘ\P |wP ) > 0 do

Identify p ∈ Θ \ P that maximizes T (z′, wΘ\P |wΘ∪s)
if T (z′, w\P , wP ∪p) < 0 then

break
else

Append P = P ∪ p
end

end

B.4 Alternate Hessian Approximations
Typical approximations are non often non-sparse; a key focus of our proposal is a
reasonably informed sparse estimation in deep unlearning: we cannot allocate both
full networks and the space for an inverse for 50K+ parameters (needs 10+GB alone).
For Deep unlearning specifically, our sub selection makes this possible. Diagonal
modification still needs full parameter updates. However, we explored the utilization
of other Hessian inverse approximation schemes. More specifically, we implemented
an unlearning scheme based on Kronecker-Factored Approximate Curvature (K-FAC)
Martens and Grosse (2015) which exploits an efficient invertible approximation of a
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deep learning model’s Fisher information matrix which can be non-sparse and neither
low rank nor diagonal. In an experimental setup, we perform unlearning based on
K-FAC from an multi layer perceptron model trained on MNIST dataset. We don’t
see any observable updates happening to the model based on validation metrics.
Whereas, the exact same model with the exact same set of parameters can unlearn
the same set of data-points using our proposed deep unlearning method based on
LCODEC. We would like to point out that in order to unlearn from deep models using
existing approximations schemes like K-FAC, we might have to re-imagine the update
step. This demands further investigation. In other words our procedure may not
be more broadly applicable to non-sparse general Hessian inverse approximations
without an obvious CI structure.

We have included the code to compare K-FAC based unlearning with LCODEC
based unlearning in the file https://github.com/vsingh-group/LCODEC-deep-unlearning/
blob/main/scrub/kfac_scrub.py

In our implementation we heavily rely on the KFAC approximations of the Hessian
as provided in https://github.com/cybertronai/autograd-lib . More instructions
can be found in the README.

https://github.com/vsingh-group/LCODEC-deep-unlearning/blob/main/scrub/kfac_scrub.py
https://github.com/vsingh-group/LCODEC-deep-unlearning/blob/main/scrub/kfac_scrub.py
https://github.com/cybertronai/autograd-lib
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Appendix C

d-EMD Theoretical and Experimental
Details

C.1 Proof of Theorem 6.4
Here, we present the proof of Theorem 4.2. The main observation in the proof invokes
perturbation analysis Mangasarian and Meyer (1979); Ferris and Mangasarian (1991)
of linear programs to assert that, under mild uniqueness conditions, small changes
to a linear program’s data does not change the linear program’s optimal solution.
The informal reason why such a result is possible can be explained using a short,
geometric argument as follows.

The feasible set of a nontrivial linear program is a polytope, and, as a rule, an
optimal solution to a linear program lives at the point where a hyperplane defined
by the objective functional intersects a vertex of the polytope. A small perturbation
of the hyperplane does not alter the intersecting vertex. The derivative of a linear
program’s optimal objective value, treated as a function of the data fed to the LP, has
been described several times in prior work, and under a variety of conditions De Wolf
and Smeers (2019); Freund (1985); Agueh and Carlier (2011); Mills (1957).

The second claim of Theorem 4.2 is useful because dual solutions to the generalized
EMD linear program are not unique. The claim explains how one can modify a given
solution (found by a direct gradient computation or else from an interior point solver,
for example) so that it agrees with the solution yielded by the primal/dual greedy
algorithm.
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Proof of Theorem 4.2. Let z∗
j , for j ∈ [d], denote an optimal solution to the dual linear

program of equation (6.5) in the main thesis. Standard sensitivity analysis of linear
programs implies that z∗

j ∈ Rn (j ∈ [d]) is also optimal for the perturbed linear
program,

maximize
zj∈Rn,j∈[d]

∑
j

(xj + εhj)′zj

subject to z1(i1) + · · ·+ zd(id) ≤ c(i1, . . . , id),

where the indices in the constraints include all ij ∈ [n], j ∈ [d], ε > 0 is sufficiently
small and hj ∈ Rn are held fixed.

If ϕ(x1 + εh1, . . . , xd + εhd) represents the optimal objective value of this program,
then by linearity,

ϕ(x1 + εh1, . . . , xd + εhd)− ϕ(x1, . . . , xd) =
∑

j

h′
jz

∗
j .

Thus, we can form the directional derivative of ϕ as

lim
ε→0

ϕ(x1 + εh1, . . . , xd + εhd)− ϕ(x1, . . . , xd)
ε ∥h∥

=
∑

j h′
jz

∗
j

∥h∥
,

where ∥h∥2 := ∑
j ∥hj∥2. From this, it follows that

∇ϕ(x1, . . . , xd) = (z∗
1 , z∗

2 , . . . , z∗
d).

This shows the first claim of the theorem.
To see the second claim, we have from Theorem 3.1 item 2 of Kline (2019) that

∑
j

z∗
j (i) = 0 (C.1)

for all i ∈ [n]. Consequently, if one defines

η = (z∗
1(n)e, z∗

2(n)e, · · · , z∗
d(n)e),
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then since we assume that e′xj = 1 for all j ∈ [d],

∑
j

x′
j(z∗

j + tη) =
∑

j

x′
jz

∗
j + t x′

jη

=
∑

j

x′
jz

∗
j + t

∑
j

z∗
j (n) x′

je

=
∑

j

x′
jz

∗
j ,

where the last equality holds by equation (C.1). This shows the second claim.

C.2 Differentiable Histogramming

Algorithm 7: Differentiable Histograms
Function Initialization(n):

r := 1/n // bin size
locs := arange(0, 1, r) // bin boundaries
return

Function Forward(acts):
cdfs = σ(acts) // compute CDFs
counts = []
for loc in locs do

dist = |cdfs− loc| // dist. to boundary
ct = ∑

i∈[nbins]
ReLU(r − dist[i]) // soft bucket count

counts.append(ct)
end
out = stack(counts)
out = out/sum(out)
return out

While gradients are now readily available, typical ML pipelines do not have distri-
butions or histograms predefined at outputs which can be fed directly into our EMD
loss. Applying existing binning procedures over the batch to estimate histograms will
break the ability to autodifferentiate: soft thresholds are necessary at bin boundaries
such that samples within a bin may move smoothly as needed. Algorithm 7 provides
a differentiable histogram implementation. Using a rectified linear relaxation allows
for samples to have a continuous gradient towards neighboring bins.
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C.3 Experimental Details
Results reported in tables in the main part of the thesis are of the form M (SD), where
M is the mean and SD is the standard deviation calculated over replications.

Setup details. Experiments were conducted using NumPy and PyTorch on a In-
tel(R) Xeon(R) CPU E5-2620 v3 @ 2.40GHz with an Nvidia Titan Xp GPU. Particular
parameter settings and experimental runs can be found below.

Data and Licenses

The datasets Adult, Communities and Crime, and German datasets are all available
under Creative Commons Attribution 4.0 International (CC BY 4.0) licenses via
the UCI Machine Learning Dataset Repository https://archive.ics.uci.edu/ml/
index.php. The CelebA dataset http://mmlab.ie.cuhk.edu.hk/projects/CelebA.
html is available for non-commercial purposes. See the website for more details.

ACS Data. The American Census Survey (ACS) has recently made available a
large set of demographic data. The original UCI Adult dataset (Dua and Graff,
2017) was curated from this data, however recent work by Ding et al. (2021) has
identified temporal shifts in demographic data, and recommends using a more recent
collection as a baseline when evaluating biases and adjusting for fairness. Part of their
contribution includes APIs to directly interface with the data provided by the ACS,
and the ability to identify and construct similar problems associated with the original
UCI-provided dataset, albeit with updated data. Data for the income prediction
task was downloaded from 2018, localized to Louisiana. Race is the provided group
label, which we wish to be agnostic towards, over some measure of our output. Data
was accessed using the folktables codebase https://github.com/zykls/folktables
with MIT License. The US Census data accessed is available for use so long as it is
not used in combination with other data “to identify any particular respondent to
a Census Bureau survey." See https://www.census.gov/data/developers/about/
terms-of-service.html for more details.

German Data. The German dataset classifies people as good or bad credit risks.
There are about 20 features (7 numerical and 13 categorical). These features represent

https://archive.ics.uci.edu/ml/index.php
https://archive.ics.uci.edu/ml/index.php
http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
https://github.com/zykls/folktables
https://www.census.gov/data/developers/about/terms-of-service.html
https://www.census.gov/data/developers/about/terms-of-service.html
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the economic status of the person, such as, credit history, savings account, year of
present employment, property and others.

Adult Data. The Adult dataset is comprised of demographic characteristics from
the UCI repository (Dua and Graff, 2017). The protected attribute here is gender. It
contains 44, 842 samples. The features that were used in the experiments include “age",
“workclass", “fnlwgt", “education", “education-num", “marital-status", “occupation",
“relationship", “race", “sex", “capital-gain", “capital-loss", “hours-per-week", “native-
country", “income". A positve target label in this dataset is indicated by the attribute
“income-bracket" being above $50K.

Communities and Crime Data. The Communities and Crime dataset consists of
summary statistics of per-capita measures from a wide variety of communities across
the United States, measured from a number of US census and surveys from the
1990’s. The original goal of the dataset was to predict crime rates in communities as a
function of various demographic, socioeconomic, and other features. The dataset has
widely become known as the prototypical example in which using racial population
distributions can be extremely harmful in perpetuating stereotypes and lead to models
that continue to exacerbate inequity that may exist within the data. As such, the
dataset has become a de facto tool in evaluating fairness metrics and methods that
attempt to account for these inequities and biases. The preprocessed data contains
1994 samples, and we attempt to predict the violent crime rate (binarized at 0.3 after
normalization between 0 and 1), and the sensitive attribute is a similarly binarized
version of the percentage black population variable.

CelebA Data. CelebA (Liu et al., 2015) consists of 200K celebrity face images from
the internet annotated by a group of paid adult participants. There are up to 40 labels
available in the dataset, each of which is binary-valued.

Fairness Experiment Details

All experiments related to fairness use a three-layer fully-connected neural network
classifier with a hidden layer size of 100. Numbers reported in Table 6.1 are means and
standard deviations over three replicate runs with different seeds. Hyperparameters
were selected as described in the main thesis, by taking the best result for each dataset
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Table C.1: Fairness Experiments. Measures evaluated using standard metrics: maxi-
mum Demographic Parity Gap (|DP|), maximum Equalized Odds Gap (|EO|), and
(DEMD). For all measures, lower values are preferred. With comparable accuracy,
DEMD regularization leads to fairer representations as measured by common metrics.
DP and EO measures are scaled by 100 for ease of presentation. Best results shown in
bold.

German Adult

Reg. Type λ |DP| |EO| DEMD |DP| |EO| DEMD

None 0 0.17(0.05) 0.11(0.02) 1.69(0.32) 0.18(0.01) 0.13(0.01) 1.69(0.07)

DP-Reg. 0.001 0.19(0.03) 0.12(0.0) 1.79(0.27) 0.18(0.01) 0.13(0.0) 1.64(0.07)

0.01 0.27(0.05) 0.17(0.01) 1.5(0.21) 0.13(0.01) 0.14(0.01) 0.99(0.09)

0.1 0.23(0.2) 0.12(0.1) 0.99(0.86) 0.02(0.03) 0.15(0.02) 0.28(0.09)

1.0 0.0(0.0) 0.19(0.17) 0.0(0.0) 0.0(0.0) 0.2(0.0) 0.0(0.0)

10.0 0.0(0.0) 0.1(0.17) 0.0(0.0) 0.0(0.0) 0.2(0.0) 0.0(0.0)

100.0 0.0(0.0) 0.0(0.0) 0.0(0.0) 0.0(0.0) 0.2(0.0) 0.0(0.0)

EO-Reg. 0.001 0.17(0.05) 0.1(0.02) 1.51(0.34) 0.18(0.01) 0.13(0.01) 1.67(0.07)

0.01 0.14(0.07) 0.09(0.04) 1.41(0.35) 0.15(0.01) 0.12(0.01) 1.44(0.08)

0.1 0.0(0.0) 0.0(0.0) 0.47(0.21) 0.03(0.01) 0.06(0.01) 0.29(0.02)

1.0 0.0(0.0) 0.0(0.0) 0.08(0.14) 0.0(0.0) 0.0(0.0) 0.0(0.0)

10.0 0.0(0.0) 0.19(0.17) 0.0(0.0) 0.0(0.0) 0.0(0.0) 0.0(0.0)

100.0 0.0(0.0) 0.0(0.0) 0.0(0.0) 0.0(0.0) 0.2(0.0) 0.0(0.0)

Bary 0.001 0.17(0.05) 0.11(0.02) 1.69(0.32) 0.18(0.01) 0.13(0.01) 1.69(0.07)

0.01 0.17(0.05) 0.11(0.02) 1.68(0.31) 0.18(0.01) 0.13(0.01) 1.69(0.07)

0.1 0.17(0.05) 0.1(0.02) 1.51(0.35) 0.18(0.01) 0.13(0.01) 1.68(0.07)

1.0 0.16(0.06) 0.1(0.03) 1.5(0.26) 0.17(0.01) 0.13(0.01) 1.6(0.07)

10.0 0.06(0.07) 0.04(0.05) 0.58(0.37) 0.09(0.01) 0.09(0.01) 1.02(0.08)

100.0 0.06(0.11) 0.03(0.06) 0.06(0.11) 0.0(0.0) 0.04(0.0) 0.39(0.05)

DEMD 0.001 0.17(0.05) 0.11(0.02) 1.69(0.32) 0.18(0.01) 0.13(0.01) 1.69(0.07)

0.01 0.17(0.05) 0.11(0.02) 1.69(0.32) 0.18(0.01) 0.13(0.01) 1.69(0.07)

0.1 0.19(0.05) 0.11(0.02) 1.32(0.18) 0.18(0.01) 0.13(0.01) 1.66(0.07)

1.0 0.2(0.09) 0.11(0.05) 1.59(0.46) 0.14(0.01) 0.12(0.01) 1.43(0.07)

10.0 0.16(0.13) 0.09(0.07) 0.5(0.12) 0.07(0.02) 0.08(0.01) 0.94(0.17)

100.0 0.06(0.08) 0.18(0.16) 0.06(0.08) 0.01(0.01) 0.01(0.01) 0.41(0.05)

over the parameter range λ ∈ [1.0, 0.1, 10, 0.01, 100, 0.001]. The full results of this
sweep are presented in Table C.1 and Table C.2.

The |DP | and |EO|measures are the gap between the corresponding conditional
probability distributions when there is a single binary group attribute, and the largest
gap (max−min) when there are more than 2 groups. The DEMD loss is computed
as described in the thesis with a discretization/bin level of 10.

Harmonization Experiment Details

For all our experiments related to harmonization, we use an encoder-decoder frame-
work comprising of fully-connected layers. The hidden layers comprised of 64 nodes
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Table C.2: Fairness Experiments. Measures evaluated using standard metrics: maxi-
mum Demographic Parity Gap (|DP|), maximum Equalized Odds Gap (|EO|), and
(DEMD). For all measures, lower values are preferred. With comparable accuracy,
DEMD regularization leads to fairer representations as measured by common metrics.
DP and EO measures are scaled by 100 for ease of presentation. Best results shown in
bold.

Crime ACS-Income

Reg. Type λ |DP| |EO| DEMD |DP| |EO| DEMD

None 0 0.38(0.06) 0.45(0.03) 2.86(0.38) 0.37(0.01) 0.25(0.0) 4.78(0.32)

DP-Reg. 0.001 0.36(0.05) 0.44(0.04) 2.81(0.3) 0.57(0.37) 0.5(0.44) 4.38(0.16)

0.01 0.35(0.02) 0.44(0.03) 2.61(0.17) 0.81(0.33) 0.76(0.42) 3.45(0.71)

0.1 0.22(0.07) 0.29(0.12) 1.58(0.28) 0.62(0.33) 0.51(0.42) 2.67(0.63)

1.0 0.0(0.0) 0.41(0.03) 0.0(0.0) 0.0(0.0) 0.67(0.58) 0.0(0.0)

10.0 0.0(0.0) 0.26(0.23) 0.0(0.0) 0.0(0.0) 0.33(0.58) 0.0(0.0)

100.0 0.0(0.0) 0.26(0.23) 0.0(0.0) 0.0(0.0) 0.33(0.58) 0.0(0.0)

EO-Reg. 0.001 0.38(0.05) 0.45(0.03) 2.85(0.38) 0.36(0.01) 0.25(0.0) 4.77(0.32)

0.01 0.36(0.06) 0.44(0.03) 2.69(0.44) 0.33(0.0) 0.24(0.0) 3.6(0.29)

0.1 0.11(0.07) 0.39(0.03) 0.61(0.23) 0.03(0.0) 0.03(0.0) 0.53(0.01)

1.0 0.0(0.0) 0.41(0.03) 0.0(0.0) 0.0(0.0) 0.0(0.0) 0.0(0.0)

10.0 0.0(0.0) 0.41(0.03) 0.0(0.0) 0.0(0.0) 0.33(0.58) 0.0(0.0)

100.0 0.06(0.1) 0.09(0.15) 0.5(0.87) 0.0(0.0) 0.33(0.58) 0.0(0.0)

Bary 0.001 0.38(0.05) 0.45(0.03) 2.86(0.38) 0.37(0.01) 0.25(0.0) 4.78(0.32)

0.01 0.38(0.06) 0.45(0.03) 2.86(0.39) 0.37(0.01) 0.25(0.0) 4.8(0.32)

0.1 0.38(0.06) 0.45(0.03) 2.83(0.39) 0.48(0.04) 0.28(0.01) 5.02(0.31)

1.0 0.37(0.06) 0.44(0.03) 2.65(0.45) 1.0(0.0) 1.0(0.0) 5.66(0.3)

10.0 0.21(0.1) 0.41(0.04) 1.36(0.32) 1.0(0.0) 1.0(0.0) 4.5(0.57)

100.0 0.01(0.01) 0.41(0.03) 0.19(0.1) 0.0(0.0) 0.33(0.58) 0.0(0.0)

DEMD 0.001 0.38(0.05) 0.44(0.04) 2.85(0.39) 0.37(0.01) 0.25(0.0) 4.78(0.32)

0.01 0.38(0.05) 0.45(0.03) 2.85(0.38) 0.38(0.01) 0.26(0.0) 4.82(0.32)

0.1 0.38(0.05) 0.44(0.03) 2.83(0.39) 1.0(0.0) 1.0(0.0) 4.33(0.42)

1.0 0.35(0.05) 0.43(0.03) 2.54(0.39) 0.93(0.12) 1.0(0.0) 2.67(0.17)

10.0 0.26(0.05) 0.39(0.02) 1.35(0.25) 0.68(0.28) 1.0(0.0) 0.9(0.47)

100.0 0.0(0.0) 0.41(0.03) 0.26(0.02) 0.0(0.0) 1.0(0.0) 0.0(0.0)

and the latent space was of dimension 30. We report the mean and standard deviation
on unseen test datasets for three random runs. The hyper-parameter selection has
been done on a validation split obtained from the training dataset. The model that
achieves the best ADV (the adversarial evaluation measure), with the test set accuracy
remains within 5% of the vanilla (titled “None” in the thesis) model, is chosen.

Recall that the harmonization experiments aimed at minimizing the distributional
differences of the latent features across the groups. Below, we will provide details
on the evaluation metrics, ADV and MMD measures, that aptly assess distributional
differences of the latent features.
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Evaluation Metric: Adversarial Measure (ADV) The ADV measure corresponds to
the accuracy obtained by training a separate neural network to predict groups from the
latent features. This step is conducted post harmonization. A lower value of the ADV
accuracy denotes that the latent features are free of any group related information.
This implies successful harmonization and suggests minimal distributional differences
of the latent features across groups. We follow (Xie et al., 2017) for training the
adversary used for reporting ADV measure. We use a three-layered fully-connected
network with batch normalization and train it with Adam optimizer for 200 epochs.
The learning rate for the adversary is decreased multiplicatively by a factor of 0.65
every 10 epochs for convergence.

Evaluation Metric: Maximum Mean Discrepancy (MMD) We simply use the
following MMD criterion as described in (Gretton et al., 2006) and evaluate the
metric on the latent features obtained from the test set. Each group is considered as a
different distribution and a lower value of this metric suggests minimal distributional
differences across the groups. For latent feature vector ℓ and groups i/j, we have

MMD = ∥ E
Z1∼P (ℓ))groupi

K(Z1, ·)− E
Z2∼P (Φ(ℓ))groupj

K(Z2, ·)∥H (C.2)

The criterion is defined using a Reproducing Kernel Hilbert Space with norm ∥ · ∥H

and kernel K.

MWGAN Details and Additional Results

The MWGAN code https://github.com/deepmo24/MWGAN was used under the MIT
license extended from the original StarGAN codebase https://github.com/yunjey/
stargan.

The original paper constructs an inter-domain penalty added to the multi-domain
GAN discriminator loss as follows:

RMW GAN(f) = λ ·
(∑

i

Ex̃(i)∼Q̂i
||∇f(x̃(i))|| − Lf

)2

+
(C.3)

The sampling for expectation in practice is done by interpolating randomly between
real data and generated data for each domain. In contrast to this, we directly push
the gradient norms computed over samples from each domain to be close using our

https://github.com/deepmo24/MWGAN
https://github.com/yunjey/stargan
https://github.com/yunjey/stargan
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Figure C.1: Convergence Plots for MWGAN and DEMD on CelebA Multi-Domain
Image Translation.

DEMD regularizer:

RDEMD(f) = λ ·DEMD
([
||∇f(x̃(i))||

]
i
, [i]

)
, (C.4)

where [i] indicates the domain associated with the fake samples generated in the
same manner for each domain.

Convergence Comparison. Interestingly we observe that our construction tends
to lead to more stable training. In Figure C.1, we can see that the variance of the
total discriminator and generator loss fluctuate much less. We suspect that this can
be directly attributed to the boundedness of the gradients of the DEMD regularizer,
specific to the method where we compute the gradients via the dual of the LP: the dual
variables are bounded by definition and in this particular LP, are bounded exactly by
the number of bins used for discretization. While additional investigation is needed,
smoothness has been identified as a desirable property of GAN training (Arora et al.,
2017; Chu et al., 2020).
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Model Blond Hair Eyeglasses Mustache Pale Skin
MWGAN Cao et al. (2019) 49.91 45.74 45.49 38.67
DEMD 47.29 34.43 50.69 39.60

Table C.3: Train FID Scores for CelebA Multi-Domain Image Translation.1

Quantitative Results. Using the Frechet Inception Distance we quantitatively mea-
sure the resulting generative samples. Following the description in Cao et al. (2019),
we present the FID scores of our model and theirs in Table C.3. Our metric as a
drop-in replacement performs comparably.

C.4 d-Dimensional Earth Mover’s Distance
Background and Algorithm

Algorithm 8 describes the greedy algorithm that solves both primal and dual gen-
eralized Earth mover’s programs, also see (Kline, 2019). The algorithm accepts d

distributions (i.e., histograms) p1, . . . , pd ∈ Rn
+ with e′pj = 1 for all j ∈ [d]. Although

the algorithm states that all histograms have the same number of bins, the algorithm
can be easily adapted to accept as inputs pi ∈ Rni

+ with ni ̸= nj . The algorithm has
explicit terminal conditions for the main while loop. In the worst case the number of
iterations can be nd.

Multidimensional Extensions via Slicing

Here we demonstrate the ability to drop-in replace existing schemes for computing
Wasserstein-style distances when the distributions of interest exist in Rp, p > 1. Al-
though this manuscript focuses on analysis in the base case, empirically we find that
d-EMD is able to outperform existing sinkhorn methods for multiple distributions in
higher dimensions. Particularly, when the number of distributions is high and the
discretization level or number of bins is reasonable, sliced sinkhorn barycenter ap-
proaches fail miserably with any practical setting of the sinkhorn regularizer weight.

1Results presented here computed using the pytorch-fid package with code from the MWGAN
repository here: https://github.com/mseitzer/pytorch-fid. We were unable to replicate the FID
scores provided in the original paper, but expect trends to be relatively similar when compared across
different scoring methods.

https://github.com/mseitzer/pytorch-fid
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Figure C.2: More qualitative results from the multi-domain image translation problem
with (Left) Cao et al. (2019), (Right) DEMD (ours). On attributes such as “Blond
Hair” and “Eyeglasses”, the generated images through our DEMD procedure appear
more realistic. On other attributes, the generated images are comparable.
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Figure C.3: More qualitative results from the multi-domain image translaton problem
with (Left) Cao et al. (2019), (Right) DEMD (ours). On attributes such as “Blond
Hair” and “Eyeglasses”, the generated images through our DEMD procedure appear
more realistic. On other attributes the generated images are comparable.
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Algorithm 8: EMD Primal/Dual Algorithm
Input: pj ∈ Rn

+ with e′pj = 1 , (∀j ∈ [d])
Function DEMD(n):

while I(j) ≤ n, (∀j ∈ [d]) do
sk := minj∈[d] pj(I(j)) // the mass to move
x(I)← sk // update the EMD solution
pj(I(j))← pj(I(j))− sk, (∀j ∈ d) // shrink the data
j∗ ← arg minj∈[d] pj(I(j))
I(j∗)← I(j∗) + 1
k ← k + 1
tk ← c(I) // cost of this step
if I(j∗) ≤ n then

zj∗(I(j∗))← tk − tk−1 + zj∗(I(j∗)− 1) // update the dual solution
end

end
return x, (z1, . . . , zd), and the objective value ∑k sktk

The parameter-free d-EMD is able to more consistently estimate the high-dimensional
distance.

C.5 An Extended Note on Ethics
As mentioned in the discussion in the main thesis body, the primary application of
our proposed construction is to reduce invariance over a particular set of features.
In practice, with respect to typical machine learning models and pipelines, this
corresponds to minimizing performance difference as measured across subgroups
within the data corresponding to a minority or protected subsets of samples or
individuals. While the construction can be applied to any existing ML pipeline, we
do not claim to provide a catch-all solution for group disparity that may be inherent
to the data or exacerbated by the choice of the ML model that is being used. As
always, care needs to be taken when working with sensitive data or models which
may have disparate impacts on different groups. We point interested readers to the
following extensive surveys and references therein regarding various methods and
procedures for addressing and dealing with bias and unfairness in ML problems,
and the potential danger associated with using models without care: (Mehrabi et al.,
2021; Leavy, 2018; O’neil, 2016; d’Alessandro et al., 2017; Rakova et al., 2021).

We also note that the final multi-marginal GAN image translation application
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could be used to generate so-called “deepfakes." While the results of our algorithm
are comparable to existing works, we believe that existing methods of identifying
deepfakes would work well, and that the methods provided here and in the original
paper (Cao et al., 2019) would require significant effort to be made practical for much
larger scale images.
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